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Introduction

A Lévy process is essentially a stochastic process with stationary and
independent increments.

The basic theory was developed, principally by Paul Lévy in the 1930s.
In the past 20 years there has been a renaissance of interest and a
plethora of books, articles and conferences. Why ?

There are both theoretical and practical reasons.
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THEORETICAL

Lévy processes are simplest generic class of process which have
(a.s.) continuous paths interspersed with random jumps of
arbitrary size occurring at random times.

Lévy processes comprise a natural subclass of semimartingales
and of Markov processes of Feller type.

There are many interesting examples - Brownian motion, simple
and compound Poisson processes, α-stable processes,
subordinated processes, financial processes, relativistic process,
Riemann zeta process . . .
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Noise. Lévy processes are a good model of “noise” in random
dynamical systems.

Input + Noise = Output

Attempts to describe this differentially leads to stochastic calculus.
A large class of Markov processes can be built as solutions of
stochastic differential equations (SDEs) driven by Lévy noise.

Lévy driven stochastic partial differential equations (SPDEs) are
currently being studied with some intensity.

Robust structure. Most applications utilise Lévy processes taking
values in Euclidean space but this can be replaced by a Hilbert
space, a Banach space (both of these are important for SPDEs), a
locally compact group, a manifold. Quantised versions are
non-commutative Lévy processes on quantum groups.
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APPLICATIONS

These include:

Turbulence via Burger’s equation (Bertoin)
New examples of quantum field theories (Albeverio, Gottshalk,
Wu)
Viscoelasticity (Bouleau)
Time series - Lévy driven CARMA models (Brockwell, Marquardt)
Stochastic resonance in non-linear signal processing (Patel,
Kosco, Applebaum)
Finance and insurance (a cast of thousands)

The biggest explosion of activity has been in mathematical finance.
Two major areas of activity are:

option pricing in incomplete markets.
interest rate modelling.

Dave Applebaum (Sheffield UK) Lecture 1 July 2010 5 / 40

Some Basic Ideas of Probability

Notation. Our state space is Euclidean space Rd . The inner product
between two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) is

(x , y) =
d∑

i=1

xiyi .

The associated norm (length of a vector) is

|x | = (x , x)
1
2 =

(
d∑

i=1

x2
i

) 1
2

.
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Let (Ω,F ,P) be a probability space, so that Ω is a set, F is a σ-algebra
of subsets of Ω and P is a probability measure defined on (Ω,F).

Random variables are measurable functions X : Ω → Rd . The law of X
is pX , where for each A ∈ F ,pX (A) = P(X ∈ A).

(Xn,n ∈ N) are independent if for all
i1, i2, . . . ir ∈ N,Ai1 ,Ai2 , . . . ,Air ∈ B(Rd),

P(Xi1 ∈ A1,Xi2 ∈ A2, . . . ,Xir ∈ Ar )

= P(Xi1 ∈ A1)P(Xi2 ∈ A2) · · ·P(Xir ∈ Ar ).

If X and Y are independent, the law of X + Y is given by convolution of
measures

pX+Y = pX ∗ pY , where (pX ∗ pY )(A) =

∫
Rd

pX (A− y)pY (dy).
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Equivalently∫
Rd

g(y)(pX ∗ pY )(dy) =

∫
Rd

∫
Rd

g(x + y)pX (dx)pY (dy),

for all g ∈ Bb(Rd) (the bounded Borel measurable functions on Rd ).
If X and Y are independent with densities fX and fY , respectively, then
X + Y has density fX+Y given by convolution of functions:

fX+Y = fX ∗ fY , where (fX ∗ fY )(x) =

∫
Rd

fX (x − y)fY (y)dy .
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The characteristic function of X is φX : Rd → C, where

φX (u) =

∫
Rd

ei(u,x)pX (dx).

Theorem (Kac’s theorem)
X1, . . . ,Xn are independent if and only if

E

exp

i
n∑

j=1

(uj ,Xj)

 = φX1(u1) · · ·φXn(un)

for all u1, . . . ,un ∈ Rd .
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More generally, the characteristic function of a probability measure µ
on Rd is

φµ(u) =

∫
Rd

ei(u,x)µ(dx).

Important properties are:-
1 φµ(0) = 1.

2 φµ is positive definite i.e.
∑

i,j ci c̄jφµ(ui − uj) ≥ 0, for all
ci ∈ C,ui ∈ Rd ,1 ≤ i , j ≤ n,n ∈ N.

3 φµ is uniformly continuous - Hint: Look at |φµ(u + h)− φµ(u)| and use
dominated convergence)).

Also µ→ φµ is injective.

Dave Applebaum (Sheffield UK) Lecture 1 July 2010 10 / 40

Conversely Bochner’s theorem states that if φ : Rd → C satisfies (1),
(2) and is continuous at u = 0, then it is the characteristic function of
some probability measure µ on Rd .

ψ : Rd → C is conditionally positive definite if for all n ∈ N and
c1, . . . , cn ∈ C for which

∑n
j=1 cj = 0 we have

n∑
j,k=1

cj c̄kψ(uj − uk ) ≥ 0,

for all u1, . . . ,un ∈ Rd .

Note: conditionally positive definite is sometimes called negative
definite.

ψ : Rd → C will be said to be hermitian if ψ(u) = ψ(−u), for all u ∈ Rd .
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Theorem (Schoenberg correspondence)

ψ : Rd → C is hermitian and conditionally positive definite if and only if
etψ is positive definite for each t > 0.

Proof. We only give the easy part here.
Suppose that etψ is positive definite for all t > 0. Fix n ∈ N and choose
c1, . . . , cn and u1, . . . ,un as above.
We then find that for each t > 0,

1
t

n∑
j,k=1

cj c̄k (etψ(uj−uk ) − 1) ≥ 0,

and so

n∑
j,k=1

cj c̄kψ(uj − uk ) = lim
t→0

1
t

n∑
j,k=1

cj c̄k (etψ(uj−uk ) − 1) ≥ 0.

2
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Infinite Divisibility

We study this first because a Lévy process is infinite divisibility in
motion, i.e. infinite divisibility is the underlying probabilistic idea which
a Lévy process embodies dynamically.

Let µ be a probability measure on Rd . Define µ∗
n

= µ ∗ · · · ∗ µ (n
times). We say that µ has a convolution nth root, if there exists a
probability measure µ

1
n for which (µ

1
n )∗

n
= µ.

µ is infinitely divisible if it has a convolution nth root for all n ∈ N. In this
case µ

1
n is unique.
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Theorem
µ is infinitely divisible iff for all n ∈ N, there exists a probability measure
µn with characteristic function φn such that

φµ(u) = (φn(u))n,

for all u ∈ Rd . Moreover µn = µ
1
n .

Proof. If µ is infinitely divisible, take φn = φ
µ

1
n
. Conversely, for each

n ∈ N, by Fubini’s theorem,

φµ(u) =

∫
Rd
· · ·
∫

Rd
ei(u,y1+···+yn)µn(dy1) · · ·µn(dyn)

=

∫
Rd

ei(u,y)µ∗
n

n (dy).

But φµ(u) =
∫

Rd ei(u,y)µ(dy) and φ determines µ uniquely. Hence
µ = µ∗

n

n . 2
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- If µ and ν are each infinitely divisible, then so is µ ∗ ν.

- If (µn,n ∈ N) are infinitely divisible and µn
w⇒ µ, then µ is infinitely

divisible.

[Note: Weak convergence. µn
w⇒ µ means

lim
n→∞

∫
Rd

f (x)µn(dx) =

∫
Rd

f (x)µ(dx),

for each f ∈ Cb(Rd).]

A random variable X is infinitely divisible if its law pX is infinitely
divisible, X d

= Y (n)
1 + · · ·+ Y (n)

n , where Y (n)
1 , . . . ,Y (n)

n are i.i.d., for each
n ∈ N.
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Examples of Infinite Divisibility

In the following, we will demonstrate infinite divisibility of a random
variable X by finding i.i.d. Y (n)

1 , . . . ,Y (n)
n such that

X d
= Y (n)

1 + · · ·+ Y (n)
n , for each n ∈ N.

Example 1 - Gaussian Random Variables

Let X = (X1, . . . ,Xd) be a random vector.
We say that it is (non − degenerate)Gaussian if it there exists a vector
m ∈ Rd and a strictly positive-definite symmetric d × d matrix A such
that X has a pdf (probability density function) of the form:-

f (x) =
1

(2π)
d
2
√

det(A)
exp

(
−1

2
(x −m,A−1(x −m))

)
, (1.1)

for all x ∈ Rd .
In this case we will write X ∼ N(m,A). The vector m is the mean of X ,
so m = E(X ) and A is the covariance matrix so that
A = E((X −m)(X −m)T ).
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A standard calculation yields

φX (u) = exp {i(m,u)− 1
2
(u,Au)}, (1.2)

and hence

(φX (u))
1
n = exp

{
i
(m

n
,u
)
− 1

2

(
u,

1
n

Au
)}

,

so we see that X is infinitely divisible with each Y (n)
j ∼ N(m

n ,
1
n A) for

each 1 ≤ j ≤ n.
We say that X is a standard normal whenever X ∼ N(0, σ2I) for some
σ > 0.

We say that X is degenerate Gaussian if (1.2) holds with det(A) = 0,
and these random variables are also infinitely divisible.
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Example 2 - Poisson Random Variables

In this case, we take d = 1 and consider a random variable X taking
values in the set n ∈ N ∪ {0}. We say that is Poisson if there exists
c > 0 for which

P(X = n) =
cn

n!
e−c .

In this case we will write X ∼ π(c). We have E(X ) = Var(X ) = c. It is
easy to verify that

φX (u) = exp[c(eiu − 1)],

from which we deduce that X is infinitely divisible with each
Y (n)

j ∼ π( c
n ), for 1 ≤ j ≤ n,n ∈ N.
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Example 3 - Compound Poisson Random Variables

Let (Z (n),n ∈ N) be a sequence of i.i.d. random variables taking
values in Rd with common law µZ and let N ∼ π(c) be a Poisson
random variable which is independent of all the Z (n)’s.The compound
Poisson random variable X is defined as follows:-

X :=

{
0 if N = 0

Z (1) + · · ·+ Z (N) if N > 0.

Theorem

For each u ∈ Rd ,

φX (u) = exp
[∫

Rd
(ei(u,y) − 1)cµZ (dy)

]
.
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Proof. Let φZ be the common characteristic function of the Zn’s. By
conditioning and using independence we find,

φX (u) =
∞∑

n=0

E(ei(u,Z (1)+···+Z (N))|N = n)P(N = n)

=
∞∑

n=0

E(ei(u,Z (1))+···+Z (n)))e−c cn

n!

= e−c
∞∑

n=0

[cφZ (u)]n

n!

= exp[c(φZ (u)− 1)],

and the result follows on writing φZ (u) =
∫

ei(u,y)µZ (dy). 2

If X is compound Poisson as above, we write X ∼ π(c, µZ ). It is clearly
infinitely divisible with each Y (n)

j ∼ π( c
n , µZ ), for 1 ≤ j ≤ n.
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The Lévy-Khintchine Formula

de Finetti (1920’s) suggested that the most general infinitely divisible
random variable could be written X = Y + W , where Y and W are
independent, Y ∼ N(m,A),W ∼ π(c, µZ ). Then φX (u) = eη(u), where

η(u) = i(m,u)− 1
2
(u,Au) +

∫
Rd

(ei(u,y) − 1)cµZ (dy). (1.3)

This is WRONG! ν(·) = cµZ (·) is a finite measure here.
Lévy and Khintchine showed that ν can be σ-finite, provided it is what
is now called a Lévy measure on Rd − {0} = {x ∈ Rd , x 6= 0}, i.e.∫

(|y |2 ∧ 1)ν(dy) <∞, (1.4)

(where a ∧ b := min{a,b}, for a,b ∈ R). Since |y |2 ∧ ε ≤ |y |2 ∧ 1
whenever 0 < ε ≤ 1, it follows from (1.4) that

ν((−ε, ε)c) <∞ for all ε > 0.
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Here is the fundamental result of this lecture:-

Theorem (Lévy-Khintchine)

A Borel probability measure µ on Rd is infinitely divisible if there exists
a vector b ∈ Rd , a non-negative symmetric d × d matrix A and a Lévy
measure ν on Rd − {0} such that for all u ∈ Rd ,

φµ(u) = exp
[
i(b,u)− 1

2
(u,Au) (1.5)

+

∫
Rd−{0}

(ei(u,y) − 1− i(u, y)1B̂(y))ν(dy)

]
. (1.6)

where B̂ = B1(0) = {y ∈ Rd ; |y | < 1}.
Conversely, any mapping of the form (1.5) is the characteristic function
of an infinitely divisible probability measure on Rd .

The triple (b,A, ν) is called the characteristics of the infinitely divisible
random variable X . Define η = logφµ, where we take the principal part
of the logarithm. η is called the Lévy symbol.
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η may also be called the characteristic exponent.
We’re not going to prove this result here. To understand it, it is
instructive to let (Un,n ∈ N) be a sequence of Borel sets in B1(0) with
Un ↓ {0}. Observe that

η(u) = lim
n→∞

ηn(u) where each

ηn(u) = i
[(

b −
∫

Uc
n∩B̂

yν(dy),u
)]

− 1
2
(u,Au) +

∫
Uc

n

(ei(u,y) − 1)ν(dy),

so η is in some sense (to be made more precise later) the limit of a
sequence of sums of Gaussians and independent compound
Poissons. Interesting phenomena appear in the limit as we’ll see
below.
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First, we classify Lévy symbols analytically:-

Theorem
η is a Lévy symbol if and only if it is a continuous, hermitian
conditionally positive definite function for which η(0) = 0.

Hilbert Space. The Lévy-Khintchine formula extends in an obvious
manner to separable Hilbert spaces H. We interpret (·, ·) as the Hilbert
space inner product. The characteristics (b,A, ν) are defined similarly -
A is a positive, symmetric linear operator on H.

Banach space. We can also extend to a separable Banach space E
having dual E∗. Define Φµ : E∗ → C by

Φµ(u) =

∫
E

ei〈u,x〉µ(dx),

where 〈·, ·〉 is duality. Replacing (·, ·) with 〈·, ·〉 the Lévy-Khintchine
formula extends naturally but care must be taken in defining a Lévy
measure!
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Stable Laws

This is one of the most important subclasses of infinitely divisible laws.
We consider the general central limit problem in dimension d = 1, so
let (Yn,n ∈ N) be a sequence of real valued i.i.d. random variables and
consider the rescaled partial sums

Sn =
Y1 + Y2 + · · ·+ Yn − bn

σn
,

where (bn,n ∈ N) is an arbitrary sequence of real numbers and
(σn,n ∈ N) an arbitrary sequence of positive numbers. We are
interested in the case where there exists a random variable X for which

lim
n→∞

P(Sn ≤ x) = P(X ≤ x), (1.7)

for all x ∈ R, i.e. (Sn,n ∈ N) converges in distribution to X . If each
bn = nm and σn =

√
nσ for fixed m ∈ R, σ > 0 then X ∼ N(m, σ2) by

the usual Laplace - de-Moivre central limit theorem.
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More generally a random variable is said to be stable if it arises as a
limit as in (1.7). It is not difficult to show that (1.7) is equivalent to the
following:-

There exist real valued sequences (cn,n ∈ N) and (dn,n ∈ N) with
each cn > 0 such that

X1 + X2 + · · ·+ Xn
d
= cnX + dn (1.8)

where X1, . . . ,Xn are independent copies of X . X is said to be strictly
stable if each dn = 0.
To see that (1.8) ⇒ (1.7) take each Yj = Xj ,bn = dn and σn = cn. In
fact it can be shown that the only possible choice of cn in (1.8) is
cn = σn

1
α , where 0 < α ≤ 2 and σ > 0. The parameter α plays a key

role in the investigation of stable random variables and is called the
index of stability.
Note that (1.8) can also be expressed in the equivalent form

φX (u)n = eiudnφX (cnu),

for each u ∈ R.
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It follows immediately from (1.8) that all stable random variables are
infinitely divisible and the characteristics in the Lévy-Khintchine
formula are given as follows:
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Theorem

If X is a stable real-valued random variable, then its characteristics
must take one of the two following forms.

1 When α = 2, ν = 0 (so X ∼ N(b,A)).

2 When α 6= 2, A = 0 and
ν(dx) =

c1

x1+α
1(0,∞)(x)dx +

c2

|x |1+α
1(−∞,0)(x)dx,

where c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0.
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A careful transformation of the integrals in the Lévy-Khintchine formula
gives a different form for the characteristic function which is often more
convenient.

Theorem

A real-valued random variable X is stable if and only if there exists
σ > 0,−1 ≤ β ≤ 1 and µ ∈ R such that for all u ∈ R,

1

φX (u) = exp
[
iµu − 1

2
σ2u2

]
when α = 2

2

φX (u) = exp
[
iµu − σα|u|α

(
1− iβsgn(u) tan(

πα

2
)
)]

when α 6= 1,2.
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Theorem
3

φX (u) = exp
[
iµu − σ|u|

(
1 + iβ

2
π

sgn(u) log(|u|)
)]

when α = 1.
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It can be shown that E(X 2) <∞ if and only if α = 2 (i.e. X is
Gaussian) and E(|X |) <∞ if and only if 1 < α ≤ 2.
All stable random variables have densities fX , which can in general be
expressed in series form. In three important cases, there are closed
forms.

1 The Normal Distribution

α = 2, X ∼ N(µ, σ2).

2 The Cauchy Distribution

α = 1, β = 0 fX (x) =
σ

π[(x − µ)2 + σ2]
.

3 The Lévy Distribution

α =
1
2
, β = 1 fX (x) =

( σ
2π

) 1
2 1

(x − µ)
3
2

exp
(
− σ

2(x − µ)

)
,

for x > µ.
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In general the series representations are given in terms of a real
valued parameter λ.

For x > 0 and 0 < α < 1:

fX (x , λ) =
1
πx

∞∑
k=1

Γ(kα+ 1)

k !
(−x−α)k sin

(
kπ
2

(λ− α)

)

For x > 0 and 1 < α < 2,

fX (x , λ) =
1
πx

∞∑
k=1

Γ(kα−1 + 1)

k !
(−x)k sin

(
kπ
2α

(λ− α)

)

In each case the formula for negative x is obtained by using

fX (−x , λ) = fX (x ,−λ), for x > 0.
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Note that if a stable random variable is symmetric then Theorem 8
yields

φX (u) = exp(−ρα|u|α) for all 0 < α ≤ 2, (1.9)

where ρ = σ(0 < α < 2) and ρ = σ√
2
, when α = 2, and we will write

X ∼ SαS in this case.
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One of the reasons why stable laws are so important in applications is
the nice decay properties of the tails. The case α = 2 is special in that
we have exponential decay, indeed for a standard normal X there is
the elementary estimate

P(X > y) ∼ e−
1
2 y2

√
2πy

as y →∞,

When α 6= 2 we have the slower polynomial decay as expressed in the
following,

lim
y→∞

yαP(X > y) = Cα
1 + β

2
σα,

lim
y→∞

yαP(X < −y) = Cα
1− β

2
σα,

where Cα > 1. The relatively slow decay of the tails for non-Gaussian
stable laws (“heavy tails”) makes them ideally suited for modelling a
wide range of interesting phenomena, some of which exhibit
“long-range dependence”.
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Deeper mathematical investigations of heavy tails require the
mathematical technique of regular variation.

The generalisation of stability to random vectors is straightforward - just
replace X1, . . . ,Xn, X and each dn in (1.8) by vectors and the formula
in Theorem 7 extends directly. Note however that when α 6= 2 in the
random vector version of Theorem 7, the Lévy measure takes the form

ν(dx) =
c

|x |d+α
dx

where c > 0.

Dave Applebaum (Sheffield UK) Lecture 1 July 2010 35 / 40

We can generalise the definition of stable random variables if we
weaken the conditions on the random variables (Y (n),n ∈ N) in the
general central limit problem by requiring these to be independent, but
no longer necessarily identically distributed.
In this case (subject to a technical growth restriction) the limiting
random variables are called self-decomposable (or of class L) and they
are also infinitely divisible.
Alternatively a random variable X is self-decomposable if and only if
for each 0 < a < 1, there exists a random variable Ya which is
independent of X such that

X d
= aX + Ya ⇔ φX (u) = φX (au)φYa(u),

for all u ∈ Rd .
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An infinitely divisible law is self-decomposable if and only if the Lévy
measure is of the form:

ν(dx) =
k(x)

|x |
dx ,

where k is decreasing on (0,∞) and increasing on (−∞,0). There has
recently been increasing interest in these distributions both from a
theoretical and applied perspective. Examples include gamma, Pareto,
Student-t , F and log-normal distributions.
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Heavy Tails - Subexponentiality and Regular Variation

Consider the aggregate behaviour of the sum of a large number of i.i.d.
random variables,

This can be co-operative so that no one r.v. dominates → familiar
Gaussian C.L.T. .

This can be dominated by the behaviour of a single random
variable → C.L.T. for stable laws.
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To capture the second type of behaviour, we say that a non-negative
random variable X is subexponential if as x →∞

P(X1 + · · ·+ Xn > x) ∼ P(max{X1, . . . ,Xn} > x),

where X1, . . . ,Xn are independent copies of X .
A natural and more easily handled subclass of subexponential random
variables are those of regular variation of index α.
X ∈ R−α where α > 0 if

lim
x→∞

FX (cx)

FX (x)
= cα,

where FX (x) := P(X > x).
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e.g. X Pareto - parameters K , α > 0, FX (x) =

(
K

K + x

)α
. X is

self-decomposable.

Intuition: “Heavy tails” (subexponentiality) are due to “large jumps”.

Large jumps are governed by the tail of the Lévy measure (see Lecture
3)

Fact (Tail equivalence): If X is infinitely divisible then FX ∈ R−α if and
only if ν ∈ R−α.

In this case limx→∞
FX (x)

ν(x)
= 1.
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