Definition: Lévy Process

Lectures on Lévy Processes and Stochastic

Calculus, Braunschweig,
Lecture 2: Lévy Processes

Let X = (X(t),t > 0) be a stochastic process defined on a probability
space (2, F, P).

We say that it has independent increments if for each n € N and each
0<t <tb<- - <lpyy1 < 0, the random variables
(X(tir1) — X(4),1 <j < n) are independent
Probability and Statistics Department, University of Sheffield, UK and it has staz‘ionfry increments if each
X(ti41) = X(4) £ X(t41 — 8) — X(0).
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We say that X is a Lévy process if
(L1) Each X(0) =0 (a.s),

The sample paths of a process are the maps t — X(t)(w) from R* to
(L2) X has independent and stationary increments, RY, for each w € Q.

(L3) Xis stochastically continuous i.e. for all 2> 0 and for all s > 0, We are now going to explore the relationship between Lévy processes
and infinite divisibility.

lim P(X(t) ~ X(s)] > &) = 0. y
s

If X is a Lévy process, then X(t) is infinitely divisible for eacht > 0.

Note that in the presence of (L1) and (L2), (L3) is equivalent to the
condition

im P(X(1)| > a) = 0.
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Proof. For each n € N, we can write
X(t) =Y + -+ Y@

where each Y{")(t) = X(&) — x (=1,

n

The Y,E )( t)'s are i.i.d. by (L2). O

From Lecture 1 we can write ¢ (u) = et for each t > 0,u € R,
where each 7(t,-) is a Lévy symbol.
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Now ¢,(0) = 1...(ii) by (L1), and the map t — ¢,(t) is continuous.
However the unlque continuous solution to (i) and (ii) is given by

du(t) = el*¥), where o : RY — C. Now by Theorem 1, X(1) is infinitely
divisible, hence « is a Lévy symbol and the result follows.

0
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Theorem

If X is a Lévy process, then

dx(n(u) = e,

for each u € RY, t > 0, where 1 is the Lévy symbol of X(1).

Proof. Suppose that X is a Lévy process and for each u € R?,t > 0,

define ¢u(t) = dx(r)(u)
then by (L2) we have for all s > 0,

du(t+s) = E(eUXH)
_ E(el(uX(H-s) X(9)) i(uX(s)))
_ E(e/(uX(H-s) X(s))) ( i(u,X(s)))
= ¢u(t)ou(s)... ()
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We now have the Lévy-Khinchine formula for a Lévy
process X = (X(t),t > 0):-

E(elUX®)) = exp{(t [i(b,u)—;(u,Au)
i /Rd_{o}(ei(u’y) — i, Y)1B(}’))V(d}’)] ) }(2.1)

for each t > 0, u € RY, where (b, A, v) are the characteristics of X(1).
We will define the Lévy symbol and the characteristics of a Lévy
process X to be those of the random variable X(1). We will sometimes
write the former as nx when we want to emphasise that it belongs to
the process X.
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Informally, we have the following asymptotic relationship between the

Let p; be the law of X(t), for each t > 0. By (L2), we have for all law of a Lévy process and its Lévy measure:

s, t > 0 that:
Ptis = Pt * Ps. v =limP

By (L3), we have p; = 6y as t — 0, i.e. lim;_,q f(x)p:(dx) = f(0). _
) ) ) ] N More precisely
(pt, t > 0) is a weakly continuous convolution semigroup of probability

d 1
measures on RE. im~ [ fo)pe(dx) = / F(x)(dx), (2.2)
Conversely, given any such semigroup, we can always construct a to f Jpd RY
Lévy process on path space via Kolmogorov’s construction. for bounded, continuous functions f which vanish in some

neighborhood of the origin.
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Examples of Lévy Processes
Example 1, Brownian Motion and Gaussian Processes We introduce the marginal processes B; = (B;(t), t > 0) where each
A (standard) Brownian motion in RY is a Lévy process B;(t) is the ith component of B(t), then it is not difficult to verify that the
B = (B(t), t > 0) for which B;’s are mutually independent Brownian motions in R. We will call

these one-dimensional Brownian motions in the sequel.

Brownian motion has been the most intensively studied Lévy process.
In the early years of the twentieth century, it was introduced as a

It follows immediately from (B1) that if B is a standard Brownian model for the physical phenomenon of Brownian motion by Einstein
motion, then its characteristic function is given by and Smoluchowski and as a description of the dynamical evolution of
stock prices by Bachelier.

(B1) B(t) ~ N(0,tl)foreach t > 0,
(B2) B has continuous sample paths.

1
S8t (u) = exp{— 5 tlul?},

foreach u e RY, t > 0.
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The theory was placed on a rigorous mathematical basis by Norbert

Wiener in the 1920’s.

We could try to use the Kolmogorov existence theorem to construct
one-dimensional Brownian motion from the following prescription on

cylinder sets of the for

m

I ={w e Qw(t) € [ar, bi],...,w(ty) € [an, by]} where
H = [ay, by] x ---[an, bn] and we have taken Q to be the set of all
mappings from R* to R:

PUE 1)

1

N //4(277)3\/t1(t2—t1)...(tn

th — tn—1

- 2
(XX1)>> dx; - .

exp <—1 <X12 +
- tnf1) 2\t

b —

However there there is then no guarantee that the paths are

continuous.
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We list a number of useful properties of Brownian motion in the case

d=1.

@ Brownian motion is locally H6lder continuous with exponent « for
every 0 < a < % i.e. forevery T > 0,w € Q there exists
K = K(T,w) such that

1B(t)(w) — B(s)(w)| < K|t —s]|%,
foral0<s<t<T.
@ The sample paths t — B(t)(w) are almost surely nowhere

differentiable.

@ For any sequence, (t,, n € N) in R with t, 1 oo,

liminf B(f,) = —oo0 a.s. limsup B(f;) = oo a.s.
n—oo n—oco

@ The law of the iterated logarithm:-

g
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The literature contains a number of ingenious methods for constructing
Brownian motion. One of the most delightful of these (originally due to
Paley and Wiener) obtains this, in the case d = 1, as a random Fourier
seriesfor0 <t < 1:

V2 i sin(rt(n+ 1))

n+3

£(n),

n=0

for each t > 0, where ({(n), n € N) is a sequence of i.i.d. N(0, 1)
random variables.
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Simulation of standard Brownian motion
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Let A be a non-negative symmetric d x d matrix and let ¢ be a square
root of A so that ¢ is a d x m matrix for which oo’ = A. Now let b € R?
and let B be a Brownian motion in R™. We construct a process

C = (C(t),t > 0) inR? by

C(t) = bt + oB(1), (2.3)

then C is a Lévy process with each C(t) ~ N(tb, tA). It is not difficult to
verify that C is also a Gaussian process, i.e. all its finite dimensional
distributions are Gaussian. It is sometimes called Brownian motion
with drift. The Lévy symbol of C is

no(u) = i(b, u) — %(u, Au).

In fact a Lévy process has continuous sample paths if and only if it is of
the form (2.3).
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We define non-negative random variables (T,, N U {0}) (usually called
waiting times) by To = 0 and for n € N,

T, = inf{t > 0; N(t) = n},

then it is well known that the T,’s are gamma distributed. Moreover,
the inter-arrival times T, — T,_1 for n € N are i.i.d. and each has
exponential distribution with mean % The sample paths of N are
clearly piecewise constant with “jump” discontinuities of size 1 at each
of the random times (Tj, n € N).
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Example 2 - The Poisson Process

The Poisson process of intensity A > 0 is a Lévy process N taking
values in NU {0} wherein each N(t) ~ w(\t) so we have

(A"

P(N(t) =

foreachn=20,1,2,....
The Poisson process is widely used in applications and there is a

wealth of literature concerning it and its generalisations.
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Simulation of a Poisson process (A = 0.5)
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Example 3 - The Compound Poisson Process

Let (Z(n), n € N) be a sequence of i.i.d. random variables taking
values in R with common law > and let N be a Poisson process of
intensity A which is independent of all the Z(n)’s. The compound
Poisson process Y is defined as follows:-

For later work it is useful to introduce the compensated Poisson
process N = (N(t), t > 0) where each N(t) = N(t) — At. Note that
E(N(t)) = 0 and E(N(t)2) = Atforeach t > 0 .
Y(t) = { 0 if N(t) =0
' Z(1)+---+ Z(N(t)) if N(t) >0,
for each t > 0,
so each Y(t) ~ w(\t, pz).
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From the work of Lecture 1, Y has Lévy symbol

() = | (@~ izl
Again the sample paths of Y are piecewise constant with “jump o
discontinuities” at the random times (T (n), n € N), however this time
the size of the jumps is itself random, and the jump at T(n) can be any
value in the range of the random variable Z(n). @
L 11 \H\\H\‘ ! L1 11 \‘\ LIiiy 1l

T
0 10 20 30

Time

Simulation of a compound Poisson process with N(0, 1)
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Example 4 - Interlacing Processes

Let C be a Gaussian Lévy process as in Example 1 and Y be a
compound Poisson process as in Example 3, which is independent of

C. X(t) = C(t) for0<t< Ty,
Define a new process X by = C(Th)+ 24 whent=T,
X(t) = C(t) + V(). = X(T1)+C(t)— C(Ty) for Ty <t< T,
= X(T,—)+2Z whent=T,,

for all t > 0, then it is not difficult to verify that X is a Lévy process with i ) ) .
and so on recursively. We call this procedure an interlacing as a

Lévy symbol . L . .
continuous path process is “interlaced” with random jumps. It seems
. 1 i(uy) reasonable that the most general Lévy process might arise as the limit
nx(u) = i(b, u) — E(U’ Au) + [/(e = DAuz(dy) |- of a sequence of such interlacings, and this can be established
rigorously.
Using the notation of Examples 2 and 3, we see that the paths of X
have jumps of random size occurring at random times.
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Example 5 - Stable Lévy Processes
A stable Lévy process is a Lévy process X in which the Lévy symbol is In general, a stochastic process Y = (Y(t),t > 0) is_self-similar with
that of a given stable law. So, in particular, each X(t) is a stable HL;IFST index H > 0 if the two processes (Y(at),t > 0) and
random variable. For example, we have the rotationally invariant case (a”Y(t),t = 0) have the same finite-dimensional distributions for all
whose Lévy symbol is given by a > 0. By examining characteristic functions, it is easily verified that a
rotationally invariant stable Lévy process is self-similar with Hurst
n(u) = —o®[ul®, index H = 1, so that e.g. Brownian motion is self-similar with H = 5. A

Lévy process X is self-similar if and only if each X(t) is strictly stable.
where « is the index of stability (0 < o < 2). One of the reasons why
these are important in applications is that they display self-similarity.
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. Densities of Lévy Processes

Question: When does a Lévy process have a density f; for all f > 0 so
that for all Borel sets B:

P(Xt S B) = pt(B) = /Bft(X)dX?

In general, a random variable has a continuous density if its
characteristic function is integrable and in this case, the density is the
120 Fourier transform of the characteristic function.
So for Lévy processes, if for all t > 0,
/ e du = / e dy < oo
Rd Rd

—160+

=200

240 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ we then have

f(x) = (2m) 7 / () ~i(uX) gy

Simulation of the Cauchy process. RI
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Every Lévy process with a non-degenerate Gaussian component has
a density. For examples where densities exist for A= 0 with d = 1: if X is

. a-stable, it has a density since forall 1 < a < 2:
In this case

1 / e U du < / e du < oo,
R(n(v)) = —2(U,AU)+/RG {0}(COS(U,}’)—1)V(d}’), Jul>1 — jupx1

andfor0 < a < 1:

/ el gy = 2 /OO e Vyaldy < co.
R @ Jo

and so

/ RO gy < / e WA _ o
Rd RY

using (u, Au) > Mul? where \ > 0 is smallest eigenvalue of A.
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In general, a sufficient condition for a density is
@ y(RY) = o

@ 7*Mis absolutely continuous with respect to Lebesgue measure
for some m € N where

5(A) = /A(|x|2 A1) (dx).
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We have p:(A) = e *&o(A) + [, f3°(x)dx, where for x # 0
A
fac f)\t Z )‘t)nf*n(

f3°(x) is the conditional density of X(t) given that it jumps at least once
between 0 and t.

In this case, (2.2) takes the precise form (for x #£ 0)

) faC X
gl/(X) = lim ti() .
tlo t
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A Lévy process has a Lévy density g, if its Lévy measure v is
absolutely continuous with respect to Lebesgue measure, then g, is

defined to be the Radon-Nikodym derivative

a.
A process may have a Lévy density but not have a density.

Example. Let X be a compound Poisson process with each
X(t)= Y1+ Yo+ -+ Yy wherein each Y; has a density fy, then
gv = My is the Lévy density.

But

so p; has an atom at {0}.
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Subordinators

A subordinator is a one-dimensional Lévy process which is increasing
a.s. Such processes can be thought of as a random model of time
evolution, since if T = (T(t),t > 0) is a subordinator we have

T(t) >0 foreacht >0 a.s. and T(t) < T(t) whenever t; <, a.s.

Now since for X(t) ~ N(O, At) we have

N(
P(X(t) > 0) = P(X(t) <0) = 5, itis clear that such a process cannot
be a subordinator.

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 36 /56



Theorem

If T is a subordinator then its Lévy symbol takes the form

n(u) = ibu + /(0 )(e’“y—1)>\(dy), (2.4)

where b > 0, and the Lévy measure \ satisfies the additional
requirements

A(—00,0) =0 and (Y A 1)A(dy) < 0.
(0,00)

Conversely, any mapping from R — C of the form (2.4) is the Lévy
symbol of a subordinator.

We call the pair (b, \), the characteristics of the subordinator T.
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Examples of Subordinators

(1) The Poisson Case

Poisson processes are clearly subordinators. More generally a
compound Poisson process will be a subordinator if and only if the
Z(n)'s are all R* valued.

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 39/56

For each t > 0, the map u — E(e""()) can be analytically continued to
the region {iu, u > 0} and we then obtain the following expression for
the Laplace transform of the distribution

)

]E(e—uT(t)) — e—tw(u)

where v(u) = —n(iu) = bu +/( )(1 — e Y)A\(dy) (2.5)
0,00

for each f,u > 0.

This is much more useful for both theoretical and practical application
than the characteristic function.

The function v is usually called the Laplace exponent of the
subordinator.
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(2) a-Stable Subordinators
Using straightforward calculus, we find that for 0 < a < 1, u > 0,

o« Q@ © o ux ax
! _r(1—a)/() (e )me

Hence for each 0 < o < 1 there exists an a-stable subordinator T with
Laplace exponent

Y(u) = u”.

and the characteristics of T are (0, \) where A(dx) = ﬁxﬁ%
Note that when we analytically continue this to obtain the Lévy symbol
we obtain the form given in Lecture 1 for stable laws with = 0,5 = 1

and o = cos (%).

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 40/ 56



(3) The Lévy Subordinator

The %—stable subordir;ator has a density given by the Lévy distribution To show directly that for each t > 0,

(withp=0and o = %) .

E(e~¢T0) = / e Sty (s)ds = e 2,
0

2

t s £
frin(s) = (M) s 2e 3,

write g¢(u) = E(e~4T())). Differentiate with respect to u and make the

for s > 0. The Lévy subordinator has a nice probabilistic interpretation substitution x = 4%5 to obtain the differential equation
as a first hitting time for one-dimensional standard Brownian motion gi(u) = —st-g:(u). Via the substitution y = -1~ we see that g;(0) = 1
(B(t) t>0) t 2\/u t ' 2\/5 t
=0 ¢ and the result follows.
T(t) =inf s>O;Bs:}. 2.6
(t) = inf { s> 0,(s) = - 26)
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(4) Inverse Gaussian Subordinators

We generalise the Lévy subordinator by replacing Brownian motion by (5) Gamma Subordinators

the Gaussian process C = (C(t), t > 0) where each C(t) = B(t) + ut Let (T(¢),t > 0) be a gamma process with parameters a, b > 0 so that
and p € R. The inverse Gaussian subordinator is defined by each T(t) has density

T(t) =inf{s > 0; C(s) = it} oo () = pat it b
where § > 0 and is so-called since t — T(t) is the generalised inverse T I(at) ’

of a Gaussian process.
Using martingale methods, we can show that for each t,u > 0,

_ _ _ 00 _at
E(e™ () = g~ 0(v2utut—u) (2.7) / e Yfrp(x)ax = (1 + %) T~ exp (—talog <1 * %))

0

for x > 0; then it is easy to verify that for each u > 0,

In fact each T(t) has a density:-
® Y From here it is a straightforward exercise in calculus to show that

5t 1
frp(s) = Ee‘m‘s*g exp {—2(1‘25231 + uzs)}, (2.8)

/ e~ fry(x)dx = exp [—t/ (1— e“")ax‘ebxdx] .
for each s, t > 0. 0 0

In general any random variable with density fr(y) is called an inverse
Gaussian and denoted as 1G(6, ).
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From this we see that (T(t),t > 0) is a subordinator with b = 0 and 3
A(dx) = ax~"e P dx. Moreover ¢/(u) = alog (1 + ¥) is the associated
Bernstein function (see below).

Simulation of a gamma subordinator.
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@ f is a Bernstein function if and only if the mapping x — e~ (X js
completely monotone for all t > 0.

Before we go further into the probabilistic properties of subordinators @ f is a Bernstein function if and only if it has the representation
we’ll make a quick diversion into analysis. o

Let f € C>((0,00)). We say it is completely monotone if (—1)"f(") >0 f(x) = a+ bx +/ (1 — e )\ (dy),

for all n € N, and a Bernstein functionif f > 0 and (—1)"f(" < 0 for all 0

neN.

for all x > 0 where a,b > 0 and [y~ (y A 1)A(dy) < co.

© g is completely monotone if and only if there exists a measure p
on [0, co) for which

g(x) = /0 e ().
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To interpret this theorem, first consider the case a = 0. In this case, if
we compare the statement of Theorem 4 with equation (2.5), we see
that there is a one to one correspondence between Bernstein functions
for which lim,_,o f(x) = 0 and Laplace exponents of subordinators.
The Laplace transforms of the laws of subordinators are always
completely monotone functions and a subclass of all possible
measures p appearing in Theorem 4 (3) is given by all possible laws
pr(r) associated to subordinators. A general Bernstein function with

a > 0 can be given a probabilistic interpretation by means of “killing”.
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We compute the Lévy symbol of the subordinated process Z.

nz = =1 o (—nx).

Proof. Foreach u e R4, t > 0,

enzn)  — E(ei(U,Z(f)))
(e

E(&/“X)pr ()

= / e pr(y(ds)

— E(e—(—nx(u))T(f))
e tor(=nx(v)) O
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One of the most important probabilistic applications of subordinators is
to “time change”. Let X be an arbitrary Lévy process and let T be a
subordinator defined on the same probability space as X such that X
and T are independent. We define a new stochastic process

Z = (Z(t),t > 0) by the prescription

for each t > 0 so that for each w € Q, Z(t)(w) = X(T(t)(w))(w). The
key result is then the following.

Z is a Lévy process. \

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 50/56

Example : From Brownian Motion to 2a-stable Processes

Let T be an a-stable subordinator (with 0 < « < 1) and X be a
d-dimensional Brownian motion with covariance A = 2/, which is
independent of T. Then for each s > 0, u € RY +7(s) = s* and

nx(u) = —|u|?, and hence nz(u) = —|u|?®, i.e. Z is a rotationally
invariant 2«-stable process.

In particular, if d = 1 and T is the Lévy subordinator, then Z is the
Cauchy process, so each Z(t) has a symmetric Cauchy distribution
with parameters ¢ = 0 and o = 1. It is interesting to observe from (2.6)
that Z is constructed from two independent standard Brownian
motions.
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Examples of subordinated processes have recently found useful
applications in mathematical finance. We briefly mention two
interesting cases:-

(i) The Variance Gamma Process

In this case Z(t) = B(T(t)), for each t > 0, where B is a standard
Brownian motion and T is an independent gamma subordinator. The
name derives from the fact that, in a formal sense, each Z(t) arises by
replacing the variance of a normal random variable by a gamma
random variable. Using Theorem 6, a simple calculation yields

U2 —at
Sz (U) = <1 + 2b> ;

for each t > 0, u € R, where a and b are the usual parameters which
determine the gamma process. It is an easy exercise in manipulating
characteristic functions to compute the alternative representation:

Z(t) = G(1) - L(1),
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The CGMY processes are a generalisation of the variance-gamma
processes due to Carr, Geman, Madan and Yor. They are
characterised by their Lévy density:

a _
gl/(x) - ‘X’1+a(eb1x1(—oo,0)(x) +e b2x1(0,oo)(x))7

where a > 0,0 < a < 2 and by, b, > 0. We obtain stable Lévy
processes when by = b, = 0. They can also be obatined by
subordinating Brownian motion with drift. The CGMY processes are a
subclass of the tempered stable processes. Note how the exponential
dampens the effects of large jumps.
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where G and L are independent gamma subordinators each with
parameters v/2b and a. This yields a nice financial representation of Z
as a difference of independent “gains” and “losses”. From this
representation, we can compute that Z has a Lévy density

a

(87 M a0) () + 07 0.0 (3)).

gV(X) =
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(i) The Normal Inverse Gaussian Process

In this case Z(t) = C(T(t)) + ut for each t > 0 where each

C(t) = B(t) + pt, with 5 € R. Here T is an inverse Gaussian
subordinator, which is independent of B, and in which we write the
parameter v = /a2 — 32, where o € R with o® > 2. Z depends on
four parameters and has characteristic function

O 2@ 5,6, 1)(u) = exp {5t(v/aZ — 2 — 02 — (5 + i)?) + putu)

foreachu e R,t > 0. Here § > Ois asin (2.7).
Each Z(t) has a density given by

X —pt\ " X — pt
fZ(f)(X) = C(O‘75757ﬂ; t)q< (51'“ > K1 <5TQQ< 5tu >> eﬁX’

for each x € R, where
q(x) = V1 + x2,C(a, B, 6, ji; ) = 7~ 0tV =3=But and K; is a
Bessel function of the third kind.
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