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Definition: Lévy Process

Let X = (X (t), t ≥ 0) be a stochastic process defined on a probability
space (Ω,F ,P).

We say that it has independent increments if for each n ∈ N and each
0 ≤ t1 < t2 < · · · < tn+1 <∞, the random variables

(X (tj+1)− X (tj),1 ≤ j ≤ n) are independent

and it has stationary increments if each
X (tj+1)− X (tj)

d
= X (tj+1 − tj)− X (0).

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 2 / 56

We say that X is a Lévy process if

(L1) Each X (0) = 0 (a.s),

(L2) X has independent and stationary increments,

(L3) X is stochastically continuous i.e. for all a > 0 and for all s ≥ 0,

lim
t→s

P(|X (t)− X (s)| > a) = 0.

Note that in the presence of (L1) and (L2), (L3) is equivalent to the
condition

lim
t↓0

P(|X (t)| > a) = 0.
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The sample paths of a process are the maps t → X (t)(ω) from R+ to
Rd , for each ω ∈ Ω.

We are now going to explore the relationship between Lévy processes
and infinite divisibility.

Theorem

If X is a Lévy process, then X (t) is infinitely divisible for each t ≥ 0.
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Proof. For each n ∈ N, we can write

X (t) = Y (n)
1 (t) + · · ·+ Y (n)

n (t)

where each Y (n)
k (t) = X (kt

n )− X ( (k−1)t
n ).

The Y (n)
k (t)’s are i.i.d. by (L2). 2

From Lecture 1 we can write φX(t)(u) = eη(t ,u) for each t ≥ 0,u ∈ Rd ,
where each η(t , ·) is a Lévy symbol.
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Theorem

If X is a Lévy process, then

φX(t)(u) = etη(u),

for each u ∈ Rd , t ≥ 0, where η is the Lévy symbol of X (1).

Proof. Suppose that X is a Lévy process and for each u ∈ Rd , t ≥ 0,
define φu(t) = φX(t)(u)
then by (L2) we have for all s ≥ 0,

φu(t + s) = E(ei(u,X(t+s)))

= E(ei(u,X(t+s)−X(s))ei(u,X(s)))

= E(ei(u,X(t+s)−X(s)))E(ei(u,X(s)))

= φu(t)φu(s) . . . (i)
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x

Now φu(0) = 1 . . . (ii) by (L1), and the map t → φu(t) is continuous.
However the unique continuous solution to (i) and (ii) is given by
φu(t) = etα(u), where α : Rd → C. Now by Theorem 1, X (1) is infinitely
divisible, hence α is a Lévy symbol and the result follows.
2

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 7 / 56

We now have the Lévy-Khinchine formula for a Lévy
process X = (X (t), t ≥ 0):-

E(ei(u,X(t))) = exp{
(

t
[
i(b,u)− 1

2
(u,Au)

+

∫
Rd−{0}

(ei(u,y) − 1− i(u, y)1B̂(y))ν(dy)

])
},(2.1)

for each t ≥ 0,u ∈ Rd , where (b,A, ν) are the characteristics of X (1).
We will define the Lévy symbol and the characteristics of a Lévy
process X to be those of the random variable X (1). We will sometimes
write the former as ηX when we want to emphasise that it belongs to
the process X .

Dave Applebaum (Sheffield UK) Lecture 2 July 2010 8 / 56



Let pt be the law of X (t), for each t ≥ 0. By (L2), we have for all
s, t ≥ 0 that:

pt+s = pt ∗ ps.

By (L3), we have pt
w→ δ0 as t → 0, i.e. limt→0 f (x)pt (dx) = f (0).

(pt , t ≥ 0) is a weakly continuous convolution semigroup of probability
measures on Rd .

Conversely, given any such semigroup, we can always construct a
Lévy process on path space via Kolmogorov’s construction.
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Informally, we have the following asymptotic relationship between the
law of a Lévy process and its Lévy measure:

ν = lim
t↓0

pt

t
.

More precisely

lim
t↓0

1
t

∫
Rd

f (x)pt (dx) =

∫
Rd

f (x)ν(dx), (2.2)

for bounded, continuous functions f which vanish in some
neighborhood of the origin.
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Examples of Lévy Processes

Example 1, Brownian Motion and Gaussian Processes

A (standard) Brownian motion in Rd is a Lévy process
B = (B(t), t ≥ 0) for which

(B1) B(t) ∼ N(0, tI) for each t ≥ 0,
(B2) B has continuous sample paths.

It follows immediately from (B1) that if B is a standard Brownian
motion, then its characteristic function is given by

φB(t)(u) = exp{−1
2

t |u|2},

for each u ∈ Rd , t ≥ 0.
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We introduce the marginal processes Bi = (Bi(t), t ≥ 0) where each
Bi(t) is the i th component of B(t), then it is not difficult to verify that the
Bi ’s are mutually independent Brownian motions in R. We will call
these one-dimensional Brownian motions in the sequel.
Brownian motion has been the most intensively studied Lévy process.
In the early years of the twentieth century, it was introduced as a
model for the physical phenomenon of Brownian motion by Einstein
and Smoluchowski and as a description of the dynamical evolution of
stock prices by Bachelier.
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The theory was placed on a rigorous mathematical basis by Norbert
Wiener in the 1920’s.
We could try to use the Kolmogorov existence theorem to construct
one-dimensional Brownian motion from the following prescription on
cylinder sets of the form
IH
t1,...,tn = {ω ∈ Ω;ω(t1) ∈ [a1,b1], . . . , ω(tn) ∈ [an,bn]} where

H = [a1,b1]× · · · [an,bn] and we have taken Ω to be the set of all
mappings from R+ to R:

P(IH
t1,...,tn )

=

∫
H

1

(2π)
n
2
√

t1(t2 − t1) . . . (tn − tn−1)
exp

(
−1

2

(
x2

1
t1

+
(x2 − x1)2

t2 − t1
+ · · ·

+
(xn − xn−1)2

tn − tn−1

))
dx1 · · · dxn.

However there there is then no guarantee that the paths are
continuous.
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The literature contains a number of ingenious methods for constructing
Brownian motion. One of the most delightful of these (originally due to
Paley and Wiener) obtains this, in the case d = 1, as a random Fourier
series for 0 ≤ t ≤ 1:

B(t) =

√
2
π

∞∑
n=0

sin(πt(n + 1
2))

n + 1
2

ξ(n),

for each t ≥ 0, where (ξ(n),n ∈ N) is a sequence of i.i.d. N(0,1)
random variables.
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We list a number of useful properties of Brownian motion in the case
d = 1.

Brownian motion is locally Hölder continuous with exponent α for
every 0 < α < 1

2 i.e. for every T > 0, ω ∈ Ω there exists
K = K (T , ω) such that

|B(t)(ω)− B(s)(ω)| ≤ K |t − s|α,
for all 0 ≤ s < t ≤ T .

The sample paths t → B(t)(ω) are almost surely nowhere
differentiable.

For any sequence, (tn,n ∈ N) in R+ with tn ↑ ∞,

lim inf
n→∞

B(tn) = −∞ a.s. lim sup
n→∞

B(tn) =∞ a.s.

The law of the iterated logarithm:-

P

(
lim sup

t↓0

B(t)

(2t log(log(1
t )))

1
2

= 1

)
= 1.
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Let A be a non-negative symmetric d × d matrix and let σ be a square
root of A so that σ is a d ×m matrix for which σσT = A. Now let b ∈ Rd

and let B be a Brownian motion in Rm. We construct a process
C = (C(t), t ≥ 0) in Rd by

C(t) = bt + σB(t), (2.3)

then C is a Lévy process with each C(t) ∼ N(tb, tA). It is not difficult to
verify that C is also a Gaussian process, i.e. all its finite dimensional
distributions are Gaussian. It is sometimes called Brownian motion
with drift. The Lévy symbol of C is

ηC(u) = i(b,u)− 1
2

(u,Au).

In fact a Lévy process has continuous sample paths if and only if it is of
the form (2.3).
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Example 2 - The Poisson Process

The Poisson process of intensity λ > 0 is a Lévy process N taking
values in N ∪ {0} wherein each N(t) ∼ π(λt) so we have

P(N(t) = n) =
(λt)n

n!
e−λt ,

for each n = 0,1,2, . . ..
The Poisson process is widely used in applications and there is a
wealth of literature concerning it and its generalisations.
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We define non-negative random variables (Tn,N ∪ {0}) (usually called
waiting times) by T0 = 0 and for n ∈ N,

Tn = inf{t ≥ 0; N(t) = n},

then it is well known that the Tn’s are gamma distributed. Moreover,
the inter-arrival times Tn − Tn−1 for n ∈ N are i.i.d. and each has
exponential distribution with mean 1

λ . The sample paths of N are
clearly piecewise constant with “jump” discontinuities of size 1 at each
of the random times (Tn,n ∈ N).
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For later work it is useful to introduce the compensated Poisson
process Ñ = (Ñ(t), t ≥ 0) where each Ñ(t) = N(t)− λt . Note that
E(Ñ(t)) = 0 and E(Ñ(t)2) = λt for each t ≥ 0 .
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Example 3 - The Compound Poisson Process

Let (Z (n),n ∈ N) be a sequence of i.i.d. random variables taking
values in Rd with common law µZ and let N be a Poisson process of
intensity λ which is independent of all the Z (n)’s. The compound
Poisson process Y is defined as follows:-

Y (t) :=

{
0 if N(t) = 0

Z (1) + · · ·+ Z (N(t)) if N(t) > 0,

for each t ≥ 0,
so each Y (t) ∼ π(λt , µZ ).
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From the work of Lecture 1, Y has Lévy symbol

ηY (u) =

[∫
(ei(u,y) − 1)λµZ (dy)

]
.

Again the sample paths of Y are piecewise constant with “jump
discontinuities” at the random times (T (n),n ∈ N), however this time
the size of the jumps is itself random, and the jump at T (n) can be any
value in the range of the random variable Z (n).
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Example 4 - Interlacing Processes

Let C be a Gaussian Lévy process as in Example 1 and Y be a
compound Poisson process as in Example 3, which is independent of
C.
Define a new process X by

X (t) = C(t) + Y (t),

for all t ≥ 0, then it is not difficult to verify that X is a Lévy process with
Lévy symbol

ηX (u) = i(b,u)− 1
2

(u,Au) +

[∫
(ei(u,y) − 1)λµZ (dy)

]
.

Using the notation of Examples 2 and 3, we see that the paths of X
have jumps of random size occurring at random times.
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X (t) = C(t) for 0 ≤ t < T1,

= C(T1) + Z1 when t = T1,

= X (T1) + C(t)− C(T1) for T1 < t < T2,

= X (T2−) + Z2 when t = T2,

and so on recursively. We call this procedure an interlacing as a
continuous path process is “interlaced” with random jumps. It seems
reasonable that the most general Lévy process might arise as the limit
of a sequence of such interlacings, and this can be established
rigorously.
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Example 5 - Stable Lévy Processes

A stable Lévy process is a Lévy process X in which the Lévy symbol is
that of a given stable law. So, in particular, each X (t) is a stable
random variable. For example, we have the rotationally invariant case
whose Lévy symbol is given by

η(u) = −σα|u|α,

where α is the index of stability (0 < α ≤ 2). One of the reasons why
these are important in applications is that they display self-similarity.
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In general, a stochastic process Y = (Y (t), t ≥ 0) is self-similar with
Hurst index H > 0 if the two processes (Y (at), t ≥ 0) and
(aHY (t), t ≥ 0) have the same finite-dimensional distributions for all
a ≥ 0. By examining characteristic functions, it is easily verified that a
rotationally invariant stable Lévy process is self-similar with Hurst
index H = 1

α , so that e.g. Brownian motion is self-similar with H = 1
2 . A

Lévy process X is self-similar if and only if each X (t) is strictly stable.
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Densities of Lévy Processes

Question: When does a Lévy process have a density ft for all t > 0 so
that for all Borel sets B:

P(Xt ∈ B) = pt (B) =

∫
B

ft (x)dx?

In general, a random variable has a continuous density if its
characteristic function is integrable and in this case, the density is the
Fourier transform of the characteristic function.
So for Lévy processes, if for all t > 0,∫

Rd
|etη(u)|du =

∫
Rd

et<(η(u))du <∞

we then have

ft (x) = (2π)−d
∫
Rd

etη(u)−i(u,x)du.
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Every Lévy process with a non-degenerate Gaussian component has
a density.

In this case

<(η(u)) = −1
2

(u,Au) +

∫
Rd−{0}

(cos(u, y)− 1)ν(dy),

and so ∫
Rd

et<(η(u))du ≤
∫
Rd

e−
t
2 (u,Au) <∞,

using (u,Au) ≥ λ|u|2 where λ > 0 is smallest eigenvalue of A.
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For examples where densities exist for A = 0 with d = 1: if X is
α-stable, it has a density since for all 1 ≤ α ≤ 2:∫

|u|≥1
e−t |u|αdu ≤

∫
|u|≥1

e−t |u|du <∞,

and for 0 ≤ α < 1:∫
R

e−t |u|αdu =
2
α

∫ ∞
0

e−tyy
1
α
−1dy <∞.
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In general, a sufficient condition for a density is

ν(Rd ) =∞

ν̃∗m is absolutely continuous with respect to Lebesgue measure
for some m ∈ N where

ν̃(A) =

∫
A

(|x |2 ∧ 1)ν(dx).
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A Lévy process has a Lévy density gν if its Lévy measure ν is
absolutely continuous with respect to Lebesgue measure, then gν is

defined to be the Radon-Nikodym derivative
dν
dx

.

A process may have a Lévy density but not have a density.

Example. Let X be a compound Poisson process with each
X (t) = Y1 + Y2 + · · ·+ YN(t) wherein each Yj has a density fY , then
gν = λfY is the Lévy density.

But

P(Y (t) = 0) ≥ P(N(t) = 0) = e−λt > 0,

so pt has an atom at {0}.
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We have pt (A) = e−λtδ0(A) +
∫

A f ac
t (x)dx , where for x 6= 0

f ac
t (x) = e−λt

∞∑
n=1

(λt)n

n!
f ∗nY (x).

f ac
t (x) is the conditional density of X (t) given that it jumps at least once

between 0 and t .
In this case, (2.2) takes the precise form (for x 6= 0)

gν(x) = lim
t↓0

f ac
t (x)

t
.
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Subordinators

A subordinator is a one-dimensional Lévy process which is increasing
a.s. Such processes can be thought of as a random model of time
evolution, since if T = (T (t), t ≥ 0) is a subordinator we have

T (t) ≥ 0 for each t > 0 a.s. and T (t1) ≤ T (t2) whenever t1 ≤ t2 a.s.

Now since for X (t) ∼ N(0,At) we have
P(X (t) ≥ 0) = P(X (t) ≤ 0) = 1

2 , it is clear that such a process cannot
be a subordinator.
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Theorem

If T is a subordinator then its Lévy symbol takes the form

η(u) = ibu +

∫
(0,∞)

(eiuy − 1)λ(dy), (2.4)

where b ≥ 0, and the Lévy measure λ satisfies the additional
requirements

λ(−∞,0) = 0 and
∫

(0,∞)
(y ∧ 1)λ(dy) <∞.

Conversely, any mapping from Rd → C of the form (2.4) is the Lévy
symbol of a subordinator.

We call the pair (b, λ), the characteristics of the subordinator T .
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For each t ≥ 0, the map u → E(eiuT (t)) can be analytically continued to
the region {iu,u > 0} and we then obtain the following expression for
the Laplace transform of the distribution

E(e−uT (t)) = e−tψ(u),

where ψ(u) = −η(iu) = bu +

∫
(0,∞)

(1− e−uy )λ(dy) (2.5)

for each t ,u ≥ 0.
This is much more useful for both theoretical and practical application
than the characteristic function.
The function ψ is usually called the Laplace exponent of the
subordinator.
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Examples of Subordinators

(1) The Poisson Case

Poisson processes are clearly subordinators. More generally a
compound Poisson process will be a subordinator if and only if the
Z (n)’s are all R+ valued.
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(2) α-Stable Subordinators

Using straightforward calculus, we find that for 0 < α < 1, u ≥ 0,

uα =
α

Γ(1− α)

∫ ∞
0

(1− e−ux )
dx

x1+α
.

Hence for each 0 < α < 1 there exists an α-stable subordinator T with
Laplace exponent

ψ(u) = uα.

and the characteristics of T are (0, λ) where λ(dx) = α
Γ(1−α)

dx
x1+α .

Note that when we analytically continue this to obtain the Lévy symbol
we obtain the form given in Lecture 1 for stable laws with µ = 0, β = 1
and σα = cos

(
απ
2

)
.
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(3) The Lévy Subordinator

The 1
2 -stable subordinator has a density given by the Lévy distribution

(with µ = 0 and σ = t2

2 )

fT (t)(s) =

(
t

2
√
π

)
s−

3
2 e−

t2
4s ,

for s ≥ 0. The Lévy subordinator has a nice probabilistic interpretation
as a first hitting time for one-dimensional standard Brownian motion
(B(t), t ≥ 0),

T (t) = inf
{

s > 0; B(s) =
t√
2

}
. (2.6)
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To show directly that for each t ≥ 0,

E(e−uT (t)) =

∫ ∞
0

e−usfT (t)(s)ds = e−tu
1
2 ,

write gt (u) = E(e−uT (t)). Differentiate with respect to u and make the
substitution x = t2

4us to obtain the differential equation
g′t (u) = − t

2
√

u gt (u). Via the substitution y = t
2
√

s we see that gt (0) = 1
and the result follows.
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(4) Inverse Gaussian Subordinators

We generalise the Lévy subordinator by replacing Brownian motion by
the Gaussian process C = (C(t), t ≥ 0) where each C(t) = B(t) + µt
and µ ∈ R. The inverse Gaussian subordinator is defined by

T (t) = inf{s > 0; C(s) = δt}

where δ > 0 and is so-called since t → T (t) is the generalised inverse
of a Gaussian process.
Using martingale methods, we can show that for each t ,u > 0,

E(e−uT (t)) = e−tδ(
√

2u+µ2−µ), (2.7)

In fact each T (t) has a density:-

fT (t)(s) =
δt√
2π

eδtµs−
3
2 exp

{
−1

2
(t2δ2s−1 + µ2s)

}
, (2.8)

for each s, t ≥ 0.
In general any random variable with density fT (1) is called an inverse
Gaussian and denoted as IG(δ, µ).
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(5) Gamma Subordinators

Let (T (t), t ≥ 0) be a gamma process with parameters a,b > 0 so that
each T (t) has density

fT (t)(x) =
bat

Γ(at)
xat−1e−bx ,

for x ≥ 0; then it is easy to verify that for each u ≥ 0,∫ ∞
0

e−ux fT (t)(x)dx =
(

1 +
u
b

)−at
= exp

(
−ta log

(
1 +

u
b

))
.

From here it is a straightforward exercise in calculus to show that∫ ∞
0

e−ux fT (t)(x)dx = exp
[
−t
∫ ∞

0
(1− e−ux )ax−1e−bxdx

]
.
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From this we see that (T (t), t ≥ 0) is a subordinator with b = 0 and
λ(dx) = ax−1e−bxdx . Moreover ψ(u) = a log

(
1 + u

b

)
is the associated

Bernstein function (see below).
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Before we go further into the probabilistic properties of subordinators
we’ll make a quick diversion into analysis.
Let f ∈ C∞((0,∞)). We say it is completely monotone if (−1)nf (n) ≥ 0
for all n ∈ N, and a Bernstein function if f ≥ 0 and (−1)nf (n) ≤ 0 for all
n ∈ N.
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Theorem

1 f is a Bernstein function if and only if the mapping x → e−tf (x) is
completely monotone for all t ≥ 0.

2 f is a Bernstein function if and only if it has the representation

f (x) = a + bx +

∫ ∞
0

(1− e−yx )λ(dy),

for all x > 0 where a,b ≥ 0 and
∫∞

0 (y ∧ 1)λ(dy) <∞.
3 g is completely monotone if and only if there exists a measure µ

on [0,∞) for which

g(x) =

∫ ∞
0

e−xyµ(dy).
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To interpret this theorem, first consider the case a = 0. In this case, if
we compare the statement of Theorem 4 with equation (2.5), we see
that there is a one to one correspondence between Bernstein functions
for which limx→0 f (x) = 0 and Laplace exponents of subordinators.
The Laplace transforms of the laws of subordinators are always
completely monotone functions and a subclass of all possible
measures µ appearing in Theorem 4 (3) is given by all possible laws
pT (t) associated to subordinators. A general Bernstein function with
a > 0 can be given a probabilistic interpretation by means of “killing”.
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One of the most important probabilistic applications of subordinators is
to “time change”. Let X be an arbitrary Lévy process and let T be a
subordinator defined on the same probability space as X such that X
and T are independent. We define a new stochastic process
Z = (Z (t), t ≥ 0) by the prescription

Z (t) = X (T (t)),

for each t ≥ 0 so that for each ω ∈ Ω,Z (t)(ω) = X (T (t)(ω))(ω). The
key result is then the following.

Theorem

Z is a Lévy process.
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We compute the Lévy symbol of the subordinated process Z .

Theorem

ηZ = −ψT ◦ (−ηX ).

Proof. For each u ∈ Rd , t ≥ 0,

eiηZ (t)(u) = E(ei(u,Z (t)))

= E(ei(u,X(T (t))))

=

∫
E(ei(u,X(s)))pT (t)(ds)

=

∫
esηX (u)pT (t)(ds)

= E(e−(−ηX (u))T (t))

= e−tψT (−ηX (u)). 2
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Example : From Brownian Motion to 2α-stable Processes

Let T be an α-stable subordinator (with 0 < α < 1) and X be a
d-dimensional Brownian motion with covariance A = 2I, which is
independent of T . Then for each s ≥ 0,u ∈ Rd , ψT (s) = sα and
ηX (u) = −|u|2, and hence ηZ (u) = −|u|2α, i.e. Z is a rotationally
invariant 2α-stable process.
In particular, if d = 1 and T is the Lévy subordinator, then Z is the
Cauchy process, so each Z (t) has a symmetric Cauchy distribution
with parameters µ = 0 and σ = 1. It is interesting to observe from (2.6)
that Z is constructed from two independent standard Brownian
motions.
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Examples of subordinated processes have recently found useful
applications in mathematical finance. We briefly mention two
interesting cases:-

(i) The Variance Gamma Process

In this case Z (t) = B(T (t)), for each t ≥ 0, where B is a standard
Brownian motion and T is an independent gamma subordinator. The
name derives from the fact that, in a formal sense, each Z (t) arises by
replacing the variance of a normal random variable by a gamma
random variable. Using Theorem 6, a simple calculation yields

ΦZ (t)(u) =

(
1 +

u2

2b

)−at

,

for each t ≥ 0,u ∈ R, where a and b are the usual parameters which
determine the gamma process. It is an easy exercise in manipulating
characteristic functions to compute the alternative representation:

Z (t) = G(t)− L(t),
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where G and L are independent gamma subordinators each with
parameters

√
2b and a. This yields a nice financial representation of Z

as a difference of independent “gains” and “losses”. From this
representation, we can compute that Z has a Lévy density

gν(x) =
a
|x |

(e
√

2bx1(−∞,0)(x) + e−
√

2bx1(0,∞)(x)).
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The CGMY processes are a generalisation of the variance-gamma
processes due to Carr, Geman, Madan and Yor. They are
characterised by their Lévy density:

gν(x) =
a

|x |1+α
(eb1x1(−∞,0)(x) + e−b2x1(0,∞)(x)),

where a > 0,0 ≤ α < 2 and b1,b2 ≥ 0. We obtain stable Lévy
processes when b1 = b2 = 0. They can also be obatined by
subordinating Brownian motion with drift. The CGMY processes are a
subclass of the tempered stable processes. Note how the exponential
dampens the effects of large jumps.
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(ii) The Normal Inverse Gaussian Process

In this case Z (t) = C(T (t)) + µt for each t ≥ 0 where each
C(t) = B(t) + βt , with β ∈ R. Here T is an inverse Gaussian
subordinator, which is independent of B, and in which we write the
parameter γ =

√
α2 − β2, where α ∈ R with α2 ≥ β2. Z depends on

four parameters and has characteristic function

ΦZ (t)(α, β, δ, µ)(u) = exp {δt(
√
α2 − β2 −

√
α2 − (β + iu)2) + iµtu}

for each u ∈ R, t ≥ 0. Here δ > 0 is as in (2.7).
Each Z (t) has a density given by

fZ (t)(x) = C(α, β, δ, µ; t)q
(

x − µt
δt

)−1

K1

(
δtαq

(
x − µt
δt

))
eβx ,

for each x ∈ R, where
q(x) =

√
1 + x2,C(α, β, δ, µ; t) = π−1αeδt

√
α2−β2−βµt and K1 is a

Bessel function of the third kind.
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