
Chapter 4

Probability and Measure

4.1 Introduction

In this chapter we will examine probability theory from the measure theoretic
perspective. The realisation that measure theory is the foundation of prob-
ability is due to the great Russian mathematician A.N.Kolmogorov (1903-
1987) who published the hugely influential “Grundbegriffe der Wahrschein-
lichkeitsrechnung” (Foundations of the Theory of Probability in English) in
1933. Since that time, measure theory has been at the centre of all math-
ematically rigorous work in probability theory and has been a vital tool in
enabling the theory to develop both conceptually and in applications.

We have already seen that probability is a measure, random variables
are measurable functions and expectation is a Lebesgue integral. But it is
not true that “probability theory” can be reduced to a subset of “measure
theory”. This is because there are important probabilistic concepts such
as independence and conditioning that do not appear naturally from within
measure theory itself, although its important to appreciate (as we will see)
that they can then be given precise mathematical meaning within the mea-
sure theoretic framework.

The famous Polish mathematician Mark Kac (1914-1984) once remarked
that “Probability theory is measure theory with a soul.” By the end of
the course, you should be able to decide for yourself if you agree with this
statement.
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4.2 Basic Concepts of Probability Theory

4.2.1 Probability as Measure

Let us review what we know so far. In this chapter we will work with general
probability spaces of the form (Ω,F , P ) where the probability P is a finite
measure on (Ω,F) having total mass 1. So

P (Ω) = 1 and 0 ≤ P (A) ≤ 1 for all A ∈ F .

P (A) is the probability that the event A ∈ F takes place. Since A ∪Ac = Ω
and A ∩ Ac = ∅, by M(ii) we have 1 = P (Ω) = P (A ∪ Ac) = P (A) + P (Ac)
so that

P (Ac) = 1− P (A).

A random variable X is a measurable function from (Ω,F) to (R,B(R)). If
A ∈ B(R), it is standard to use the notation (X ∈ A) to denote the event
X−1(A) ∈ F . The law or distribution of X is the induced probability measure
on (R,B(R)) given by pX(B) = P (X−1(B)) for B ∈ B(R). So

pX(B) = P (X ∈ B) = P (X−1(B)) = P ({ω ∈ Ω;X(ω) ∈ B}).

The expectation of X is the Lebesgue integral:

E(X) =

∫
Ω

X(ω)dP (ω) =

∫
R
xdpX(x),

(see Problem 51) which makes sense and yields a finite quantity if and only
if X is integrable, i.e. E(|X|) <∞. In this case, we write µ = E(X) and call
it the mean of X. Note that for all A ∈ F

P (A) = E(1A).

By the result of Problem 15, any Borel measurable function f from R to
R enables us to construct a new random variable f(X) for which f(X)(ω) =
f(X(ω)) for all ω ∈ Ω. For example we may take f(x) = xn for all n ∈ N.
Then the nth moment E(Xn) will exist and be finite if |X|n is integrable. If
X has a finite second moment then its variance Var(X) = E((X−µ)2) always
exists (see Problem 52). It is common to use the notation σ2 =Var(X). The
standard deviation of X is σ =

√
Var(X).

Here’s some useful notation. If X and Y are random variables defined on
the same probability space and A1, A2 ∈ F it is standard to write:

P (X ∈ A1, Y ∈ A2) = P ((X ∈ A1) ∩ (Y ∈ A2)).
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4.2.2 Continuity of Probabilities

Recall from section 1.5 that a sequence of sets (An) with An ∈ F for all n ∈ N
is increasing if An ⊆ An+1 for all n ∈ N and we write A =

⋃
n∈NAn. We

similarly say that a sequence (Bn) with Bn ∈ F for all n ∈ N is decreasing if
Bn ⊇ Bn+1 for all n ∈ N and we write B =

⋂
n∈NBn in this case.

Theorem 4.2.1 [Continuity of Probabilities]

1. If (An) is increasing then P (A) = limn→∞ P (An).

2. If (Bn) is decreasing then P (B) = limn→∞ P (Bn).

Proof. (1) is just Theorem 1.5.1 of Chapter 1 applied to probability
measures and (2) follows from Problem 9. �

Note that Theorem 4.2.1 (2) does not hold for general measures, only for
finite (and hence probability) measures.

4.2.3 The Cumulative Distribution Function

Let X : Ω → R be a random variable. Its cumulative distribution function
or cdf is the mapping FX : R→ [0, 1] defined for each x ∈ R by

FX(x) = P (X ≤ x) = pX((−∞, x]).

When X is understood we will just denote FX by F . The next result gathers
together some useful properties of the cdf. Recall that if f : R → R, the
left limit at x is limy↑x f(y) = limy→x,y<x f(y), and the right limit at x is
limy↓x f(y) = limy→x,y>x f(y). In general, left and right limits may not exist,
but they do at every point when the function f is monotonic increasing (or
decreasing).

Theorem 4.2.2 Let X be a random variable having cdf FX .

1. P (X > x) = 1− F (x),

2. P (x < X ≤ y) = F (y)− F (x) for all x < y.

3. F is monotonic increasing, i.e F (x) ≤ F (y) for all x < y,

4. P (X = x) = F (x)− limy↑x F (y),

5. The mapping x → F (x) is right continuous, i.e. F (x) = limy↓x F (y),
for all x ∈ R,
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6. limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

Proof. (1), (2) and (3) are easy exercises.

(4) Let (an) be a sequence of positive numbers that decreases to zero. Let
x ∈ R be arbitrary and for each n ∈ N, define Bn = (x− an < X ≤ x).
Then (Bn) decreases to the event (X = x) and using (2) and Theorem
4.2.1 (2),

P (X = x) = lim
n→∞

P (Bn) = F (x)− lim
n→∞

F (x− an),

and the result follows.

(5) Let x and (an) be as in (4) and for each n ∈ N define An = (X > x+an).
The sets (An) are increasing to (X > x) and using (1) and Theorem
4.2.1 (1) we find that

1− F (x) = lim
n→∞

P (An) = 1− lim
n→∞

F (x+ an),

and the result follows.

(6) is Problem 43. �

Remark. It can be shown that a function F : R → R is the cdf of a
random variable X if and only if it satisfies (3), (5) and (6) of Theorem 4.2.2.

We say that x ∈ R is a continuity point of F if F is continuous there,
i.e. if it is left continuous as well as right continuous. In the literature, X is
called a continuous random variable if its cdf FX is continuous at every point
x ∈ R and is called a discrete random variable if FX has jump discontinuities
at a countable set of points and is constant between these jumps. Note that
if x is a continuity point of F then P (X = x) = 0 by Theorem 4.2.2(4).
We say that FX is absolutely continuous if there exists an integrable function
fX : R → R so that FX(x) =

∫ x
−∞ fX(y)dy for all x ∈ R. In this case

FX is certainly continuous. The function fX is called the probability density
function or pdf of X. Clearly fX ≥ 0 (a.e.) and by Theorem 4.2.2 (6) we have∫∞
−∞ fX(y)dy = 1. We have already seen the example of the Gaussian random

variable that is absolutely continuous. Other examples that you may have
encountered previously include the uniform, t, gamma and beta distributions.
Typical examples of discrete random variables are the binomial and Poisson
distributions.
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4.2.4 Independence

In this subsection we consider the meaning of independence for events, ran-
dom variables and σ-algebras.

Independence means multiply. We say that two events A1, A2 ∈ F are
independent if

P (A1 ∩ A2) = P (A1)P (A2).

We extend this by induction to n events. But for many applications, we want
to discuss independence of infinitely many events, or to be precise a sequence
(An) of events with An ∈ F for all n ∈ N. The definition of independence is
extended from the finite case by considering all finite subsets of the sequence.
Formally:

Definition 4.1 We say that the events in the sequence (An) are indepen-
dent if the finite set {Ai1 , Ai2 , . . . , Aim} is independent for all finite subsets
{i1, i2, . . . , im} of the natural numbers, i.e.

P (Ai1 ∩ Ai2 ∩ · · · , Aim) = P (Ai1)P (Ai2) · · ·P (Aim).

We recall that two random variables X and Y are said to be independent
if P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B), for all A,B ∈ B(R). In other
words the events (X ∈ A) and (Y ∈ B) are independent for all A,B ∈ B(R).
Again this is easily extended to finite collections of random variables. Now
suppose we are given a sequence of random variables (Xn). We say that
the Xn’s are independent if every finite subset Xi1 , Xi2 , . . . , Xim of random
variables is independent, i.e.

P (Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , . . . , Xim ∈ Aim) = P (Xi1 ∈ Ai1)P (Xi2 ∈ Ai2) · · ·P (Xim ∈ Aim)

for all Ai1 , Ai2 , . . . , Aim ∈ B(R) and for all finite {i1, i2, . . . , im} ⊂ N.
In the case where there are two random variables, we may consider

the random vector Z = (X, Y ) as a measurable function from (Ω,F) to
(R2,B(R2)) where the Borel σ-algebra B(R2) is the smallest σ-algebra gen-
erated by all open intervals of the form (a, b) × (c, d). The law of Z is, as
usual, pZ = P ◦ Z−1 and the joint law of X and Y is precisely pZ(A×B) =
P (X ∈ A, Y ∈ B) for A,B ∈ B(R). Then X and Y are independent if and
only if

pZ(A×B) = pX(A)pY (B),

i.e. the joint law factorises as the product of the marginals.

Theorem 4.2.3 If X and Y are independent integrable random variables.
Then

E(XY ) = E(X)E(Y ).
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Proof. By the two-dimensional version of Problem 51,

E(XY ) =

∫
R2

xypZ(dx, dy)

=

(∫
R
xpX(dx)

)(∫
R
ypY (dy)

)
= E(X)E(Y ),

where we have used Fubini’s theorem to write the integral over R2 as a
repeated integral. �

Lets go back to measure theory and consider a measurable space (S,Σ).
We say that Σ′ ⊆ Σ is a sub-σ-algebra if it is itself a σ-algebra. For example
the trivial σ-algebra {S, ∅} is a sub-σ-algebra of any σ-algebra defined on
S. If (An) is sequence of sets in Σ then σ(A1, A2, . . .) is defined to be the
smallest sub-σ-algebra of Σ that contains An for all n ∈ N.

Sub-σ-algebras play an important role in probability theory. For example
let X be a random variable defined on (Ω,F , P ). Then σ(X) is the smallest
sub-σ-algebra of F that contains all the events X−1(A) for A ∈ B(R). For
example let X describe a simple coin toss so that

X =

{
0 if the coin shows tails
1 if the coin shows heads

If A = X−1({0}) then Ac = X−1({1}) and σ(X) = {∅, A,Ac,Ω}.
Two sub-σ-algebras G1 and G2 are said to be independent if

P (A ∩B) = P (A)P (B)

for all A ∈ G1, B ∈ G2. In the next section we will need the following
proposition which is here stated without proof.

Proposition 4.2.1 Let (An) and (Bn) be sequences of events in F which
are such that the combined sequence (An, Bn) is independent (i.e. any finite
subset containing both An’s and Bm’s is independent.) Then the two sub-σ-
algebras σ(A1, A2, . . .) and σ(B1, B2, . . .) are independent.

4.3 Tail Events

4.3.1 Limsup, Liminf and Borel-Cantelli

One of our main aims in this chapter is to establish key results about asymp-
totic behaviour of sequences of random variables, namely the law(s) of large
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numbers and the central limit theorem. This focuses our attention on so
called “tail events”. We’ll define these in the next subsection. We’ll start
with two important examples. Let (An) be a sequence of events so that
An ∈ F for all n ∈ N. We define

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak, lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak.

It is clear that lim infn→∞An, lim supn→∞An ∈ F and you can show in Prob-
lem 48 that lim infn→∞An ⊆ lim supn→∞An.

The event lim supn→∞An is sometimes written {An, i.o.}. The i.o. stands
for infinitely often as intuitively, it is the event where infinitely many of the
Ans occur.

The event lim infn→∞An is sometimes written {An, a.a.}. The a.a. stands
for almost always as intuitively, it is the event that occurs if all of the Ans
occur except for a possible finite number.

Theorem 4.3.1

P
(

lim inf
n→∞

An

)
≤ lim inf

n→∞
P (An) ≤ lim sup

n→∞
P (An) ≤ P

(
lim sup
n→∞

An

)
.

Proof. We only prove the first inequality on the left here. As the events⋂∞
k=nAk are increasing to lim infn→∞An we can use continuity of probability

(Theorem 4.2.1. (1)) to show that

P
(

lim inf
n→∞

An

)
= lim

n→∞
P

(
∞⋂
k=n

Ak

)

= lim inf
n→∞

P

(
∞⋂
k=n

Ak

)
≤ lim inf

n→∞
P (An),

where the last line uses monotonicity. The last inequality on the right in the
statement of the theorem is Problem 49(b). �

The next result (particularly the first part) is very important and plays a
vital role in proving later results. It is called the Borel-Cantelli lemma after
Emile Borel who we’ve already met and the Italian mathematician Francesco
Paulo Cantelli (1875-1966). Before we present the theorem and its proof, we
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give a useful inequality. By Taylor’s theorem there exists 0 < θ < 1 so that
for all x ≥ 0,

e−x = 1− x+
x2

2
e−θx,

and so

e−x ≥ 1− x (4.3.1)

Theorem 4.3.2 [The Borel-Cantelli Lemma.] Let (An) be a sequence of
events in F .

1. If
∑∞

n=1 P (An) <∞ then P (lim supn→∞An) = 0.

2. If (An) is independent and
∑∞

n=1 P (An) =∞ then P (lim supn→∞An) =
1.

Proof.

1. For all m ∈ N we have lim supn→∞An ⊆
⋃∞
k=mAk and so by mono-

tonicity and Theorem 1.5.2,

P

(
lim sup
n→∞

An

)
≤ P

(
∞⋃
k=m

Ak

)

≤
∞∑
k=m

P (Ak) → 0 as m→∞.

2. By Problem 49(a),its enough to show that P (lim infn→∞A
c
n) = 0. Now

let m ∈ N be arbitrary, then for all n > m by independence and then
using (4.3.1)

P

(
n⋂

k=m

Ack

)
=

n∏
k=m

P (Ack)

=
n∏

k=m

(1− P (Ak))

≤
n∏

k=m

e−P (Ak)

= exp

(
−

n∑
k=m

P (Ak)

)
→ 0 as n→∞.
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Then by continuity of probability (Theorem 4.2.1 (b)) P (
⋂∞
k=mA

c
k) =

0. Since this holds for all m ∈ N we have

P
(

lim inf
n→∞

Acn

)
= P

(
∞⋃
m=1

∞⋂
k=m

Ack

)
≤

∞∑
m=1

P

(
∞⋂
k=m

Ack

)
= 0. �

Let (Xn) be a sequence of independent random variables, each of which
takes values 0 or 1 with probability 1/2. The possible scenarios (X1(ω), X1(ω), . . .)
where ω ∈ Ω are called Bernoulli sequences. So each Bernoulli sequence is a
sequence of 0s and 1s.

Example Show that the pattern 1001 occurs infinitely often (with prob-
ability one) in a Bernoulli sequence.

Solution. Let En be the event that 1001 occurs starting at the nth point
in the sequence. Then P (En) = 1/16. So

∑∞
n=1 P (En) = ∞. Now En and

En+1 are not independent. But En and En+4 are independent for all n ∈
N. In fact E1, E5, E9, . . . , E4n+1, . . . are independent and

∑∞
k=0 P (E4k+1) =

∞. So by the Borel-Cantelli lemma, P (lim supn→∞E4n+1) = 1. So 1 =
P (lim supn→∞E4n+1) ≤ P (lim supn→∞En) ≤ 1 and so P (lim supn→∞En) =
1 as is required.

Let (An) be a sequence of events in F . The tail σ-algebra associated to
(An) is

τ =
∞⋂
n=1

σ(An, An+1, . . . , ).

Clearly lim infn→∞An ∈ τ and lim supn→∞An ∈ τ (Why?) The next
result may appear quite surprising. It is called the Kolmogorov 0− 1 law in
honour of A.N.Kolmogorov.

Theorem 4.3.3 [Kolmogorov’s 0 − 1 law.] Let (An) be a sequence of inde-
pendent events in F and τ be the tail σ-algebra that they generate. If A ∈ τ
then either P (A) = 0 or P (A) = 1.

Proof. If A ∈ τ then A ∈ σ(An, An+1, . . . , ) for all n ∈ N. Then by
Proposition 4.2.1 A is independent of A1, A2, . . . , An−1 for all n = 2, 3, 4, . . ..
Since independence is only defined in terms of finite subcollections of sets, it
follows that A is independent of {A1, A2, . . .}. But A ∈ τ ⊆ σ(A1, A2, . . . , ).
Hence A is independent of itself. So P (A) = P (A ∩ A) = P (A)2 and hence
P (A) = 0 or 1. �

In the light of the Kolmogorov 0− 1 law, at least the second part of the
Borel-Cantelli lemma should no longer seem so surprising.
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4.4 Convergence of Random Variables

Let (Xn) be a sequence of random variables, all of which are defined on the
same probability space (Ω,F , P ). There are various different ways in which
we can examine the convergence of this sequence to a random variable X
(which is also defined on (Ω,F , P ).

We say that (Xn) converges to X

• in probability if given any a > 0, limn→∞ P (|Xn −X| > a) = 0,

• in mean square if limn→∞ E(|Xn −X|2) = 0,

• almost surely if there exists Ω′ ∈ F with P (Ω′) = 1 so that limn→∞Xn(ω) =
X(ω) for all ω ∈ Ω′.

When (Xn) converges to X almost surely we sometimes write Xn → X
(a.s.) as n→∞.

There are some relationships between these different modes of conver-
gence.

Theorem 4.4.1 1. Convergence in mean square implies convergence in
probability.

2. Convergence almost surely implies convergence in probability.

Proof.

1. This follows from Chebychev’s inequality (Problems 25 and 26)1 since
for any a > 0,

P (|Xn −X| > a) ≤ E(|Xn −X|2)

a2
→ 0 as n→∞.

2. Let ε > 0 be arbitrary and let An = {ω ∈ Ω, there exists m >
n for which |Xm(ω) − X(ω)| > ε}. As Xn → X (a.s) as n → ∞,
(An) is a decreasing sequence of events. Let A =

⋂∞
n=1 An. If ω ∈ A

then Xn(ω) cannot converge to X(ω) as n → ∞ and so P (A) ≤
P (Ω − Ω′) = 0. By continuity of probability (Theorem 4.2.1 (b)),
limn→∞ P (An) = 0. But for all m > n,P (|Xm −X| > ε) ≤ P (An) and
the result follows. �.

1Strictly speaking, we are using the inequality P (|Y | > a) ≤ E(|Y |2)

a2
, which is proved

in the same way as Chebychev’s.
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We have a partial converse to Theorem 4.4.1 (2)

Theorem 4.4.2 If Xn → X in probability as n→∞ then there is a subse-
quence of (Xn) that converges to X almost surely.

Proof. If (Xn) converges in probability to X, for all c > 0, given any
ε > 0, there exists N(c) ∈ N so that for all n > N(c),

P (|Xn −X| > c) < ε.

In order to find our subsequence, first choose, c = 1 and ε = 1, then for
n > N(1),

P (|Xn −X| > 1) < 1.

Next choose c = 1/2 and ε = 1/4, then for n > N(2),

P (|Xn −X| > 1/2) < 1/4,

and for r ≥ 3, c = 1/r and ε = 1/2r, then for n > N(r),

P (|Xn −X| > 1/r) < 1/2r,

Now choose the numbers kr = N(r) + 1, for r ∈ N to obtain a subsequence
(Xkr) so that for all r ∈ N,

P (|Xkr −X| > 1/r) < 1/2r.

Since
∑∞

r=1
1
2r
< ∞, by the first Borel-Cantelli lemma (Theorem 4.3.2

(i)) we have
P (lim sup

r→∞
|Xkr −X| > 1/r) = 0,

and so
P (lim inf

r→∞
|Xkr −X| ≤ 1/r) = 1.

This means that for all r ∈ N

P

(⋃
n∈N

⋂
r>n

|Xkr −X| ≤ 1/r

)
= 1,

and so, at least one of the events
⋂
r>n |Xkr−X| ≤ 1/r occurs with probability

one. Then in the definition of almost sure convergence, we can take Ω′ =
lim infr→∞(|Xkr −X| ≤ 1/r), and so for any ω ∈ Ω′, given ε > 0, we can find
N ∈ N such that for r > N, |Xkr(ω)−X(ω)| ≤ 1

r
< ε, and the result follows.

�

Note that there is no simple relationship between a.s. convergence and
convergence in mean square.
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4.5 Laws of Large Numbers

Let (Xn) be a sequence of random variables all defined on the same proba-
bility space, that have the following properties,

• they are independent (see section 4.2)

• they are identically distributed , i.e. pXn = pXm for all n 6= m. In other
words, for all A ∈ B(R),

P (X1 ∈ A) = P (X2 ∈ A) = · · · = P (Xn ∈ A) = · · ·

Such a sequence is said to be i.i.d.. I.i.d. sequences are very important
in probability modelling (consider the steps of a random walk) and also
statistics (consider a sequence of idealised experiments carried out under
identical conditions.) We can form a new sequence of random variables (Xn)
where Xn is the empirical mean

Xn =
1

n
(X1 +X2 + · · ·+Xn).

If Xn is integrable for some (and hence all) n ∈ N then E(Xn) = µ is finite. It
also follows that Xn is integrable, and by linearity E(Xn) = µ. If E(X2

n) <∞
then (see Problem 53) Var(Xn) = σ2 < ∞ for some (and hence all) n ∈ N,
and it follows by elementary properties of the variance that Var(Xn) = σ2

n
.

It is extremely important to learn about the asymptotic behaviour of Xn as
n → ∞. Two key results are the weak law of large numbers or WLLN and
the strong law of large numbers or SLLN. In fact the second of these implies
the first but its much harder to prove. Later in this chapter we will study
the central limit theorem or CLT.

Theorem 4.5.1 [WLLN] Let (Xn) be a sequence of integrable i.i.d. random
variables with E(Xn) = µ for all n ∈ N. Suppose also that E(X2

n) < ∞ for
all n ∈ N. Then Xn → µ in probability as n→∞.

Proof. Let σ2 = Var(Xn) for all n ∈ N. Then by Chebychev’s inequality,
for all a > 0,

P (|Xn − µ| > a) ≤ Var(Xn)

a2

=
σ2

na2
→ 0 as n→∞. �
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Theorem 4.5.2 [SLLN] Let (Xn) be a sequence of integrable i.i.d. random
variables with E(Xn) = µ for all n ∈ N. Suppose also that E(X2

n) < ∞ for
all n ∈ N. Then Xn → µ almost surely as n→∞.

Before we discuss the proof we make an observation. SLLN ⇒ WLLN
by Theorem 4.4.1 (2). The full proof of the SLLN is a little difficult for
this course (see e.g. Rosenthal pp.47-9). We’ll give a manageable proof by
making an assumption on the fourth moments of the sequence (Xn).

Assumption 4.1 E((Xn − µ)4) = b <∞ for all n ∈ N.

Proof of SLLN under Assumption 4.1. Assume that µ = 0. If not we
can just replace Xn throughout the proof with Yn = Xn − µ. Let Sn =
X1 + X2 + · · · + Xn so that Sn = nXn for all n ∈ N. Consider E(S4

n). It
contains many terms of the form E(XjXkXlXm) (with distinct indices) and
these all vanish by independence. A similar argument disposes of terms of
the form E(XjX

3
k) and E(XjXkX

2
l ). The only terms with non-vanishing

expectation are n terms of the form X4
i and

(
n
2

)
.
(

4
2

)
= 3n(n− 1) terms of the

form X2
iX

2
j with i 6= j. Now by Problem 44, X2

i and X2
j are independent for

i 6= j and so

E(X2
iX

2
j ) = E(X2

i )E(X2
j ) = Var(X2

i )Var(X2
j ) = σ4.

We then have

E(S4
n) =

n∑
i=1

E(X4
i ) +

∑
i 6=j

E(X2
iX

2
j )

= nb+ 3n(n− 1)σ4 ≤ Kn2,

where K = b + 3σ4. Then for all a > 0, by Markov’s inequality (Lemma
3.3.1)

P (|Xn| > a) = P (S4
n > a4n4)

≤ E(S4
n)

a4n4

≤ Kn2

a4n4
=

K

a4n2
.

But
∑∞

n=1
1
n2 <∞ and so by the first Borel-Cantelli lemma, P (lim supn→∞ |Xn| >

a) = 0 and so P (lim infn→∞ |Xn| ≤ a) = 1. By a similar argument to the
last part of Theorem 4.4.2 we deduce that Xn → 0 a.s. as required. �
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Notes

1. The last part of the proof skated over some details. In fact you can show
that for any sequence (Yn) of random variables P (lim supn→∞ |Yn−Y | ≥
a) = 0 for all a > 0 implies that Yn → Y (a.s.) as n→∞. See Lemma
5.2.2 in Rosenthal p.45.

2. The proof in the general case without Assumption 4.1 uses a truncation
argument and defines Yn = Xn1{Xn≤n}. Then Yn ≤ n for all n and so
E(Y k

n ) ≤ nk for all k. If Xn ≥ 0 for all n, E(Yn) → µ by monotone
convergence. Roughly speaking we can prove a SLLN for the Yns. We
then need a clever probabilistic argument to transfer this to the Xns.
The assumption in Theorem 4.5.2 that all the random variables have a
finite second moment may also be dropped.

4.6 Characteristic Functions and Weak Con-

vergence

In this section, we introduce two tools that we will need to prove the central
limit theorem.

4.6.1 Characteristic Functions

Let (S,Σ,m) be a measure space and f : S → C be a complex-valued func-
tion. Then we can write f = f1 + if2 where f1 and f2 are real-valued func-
tions. We say that f is measurable/integrable if both f1 and f2 are. Define
|f |(x) = |f(x)| =

√
f1(x)2 + f2(x)2 for each x ∈ S. It is not difficult to see

that |f | is measurable, using e.g. Problem 13. In Problem 56, you can prove
that f is integrable if and only if |f | is integrable. The Lebesgue dominated
convergence theorem continues to hold for sequences of measurable functions
from S to C.

Now let X be a random variable defined on a probability space (Ω,F , P ).
Its characteristic function φX : R→ C and is defined, for each u ∈ R, by

φX(u) = E(eiuX) =

∫
R
eiuypX(dy).

Note that y → eiuy is measurable since eiuy = cos(uy) + i sin(uy) and
integrability holds since |eiuy| ≤ 1 for all y ∈ R and in fact we have |φX(u)| ≤
1 for all u ∈ R.
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Example X ∼ N(µ, σ2) means that X has a normal or Gaussian distri-
bution with mean µ and variance σ2 so that for all x ∈ R,

FX(x) =
1

σ
√

2π

∫ x

−∞
exp

{
−1

2

(
y − µ
σ

)2
}
dy.

In Problem 56, you can show for yourself that in this case, for all u ∈ R

φX(u) = exp

{
iµu− 1

2
σ2u2

}
.

Characteristic functions have many interesting properties. Here is one of
the most useful. It is another instance of the “independence means multiply”
philosophy.

Theorem 4.6.1 If X and Y are independent random variables then for all
u ∈ R,

φX+Y (u) = φX(u)φY (u).

Proof.

φX+Y (u) = E(eiu(X+Y )) = E(eiuXeiuY ) = E(eiuX)E(eiuY ) = φX(u)φY (u),

by Problem 44. �

The following result is also important but we omit the proof. It tells us
that the probability law of a random variable is uniquely determined by its
characteristic function.

Theorem 4.6.2 If X and Y are two random variables for which φX(u) =
φY (u) for all u ∈ R then pX = pY .

The characteristic function is the Fourier transform of the law pX of the
random variable X and we have seen that it always exists. In elementary
probability theory courses we often meet the Laplace transform E(euX) of
X which is called the moment generating function. This exists in some nice
cases (e.g. when X is Gaussian), but will not do so in general as y → euy

may not be integrable since it becomes unbounded as y →∞ (when u > 0)
and as y → −∞ (when u < 0.)

We will now develop an important inequality that we will need to prove
the central limit theorem. Let x ∈ R and let Rn(x) be the remainder term
of the series expansion at n ∈ N ∪ {0} in eix, i.e.

Rn(x) = eix −
n∑
k=0

(ix)k

k!
.
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Note that R0(x) = eix − 1 =

{ ∫ x
0
ieiydy if x > 0

−
∫ 0

x
ieiydy if x < 0

. From the last

two identities, we have |R0(x)| ≤ min{|x|, 2}. Then you should check that

Rn(x) =

{ ∫ x
0
iRn−1(y)dy if x > 0

−
∫ 0

x
iRn−1(y)dy if x < 0

. Finally using induction, we can

deduce the useful inequality:

|Rn(x)| ≤ min

{
2|x|n

n!
,
|x|n+1

(n+ 1)!

}
.

Now let X be a random variable with characteristic function φX for which
E(|X|n) < ∞ for some given n ∈ N. Then integrating the last inequality
yields for all y ∈ R∣∣∣∣∣φX(y)−

n∑
k=0

(iy)kE(Xk)

k!

∣∣∣∣∣ ≤ E
[
min

{
2|yX|n

n!
,
|yX|n+1

(n+ 1)!

}]
. (4.6.2)

When we prove the CLT we will want to apply this in the case n = 2 to
a random variable that has E(X) = 0. Then writing E(X2) = σ2 we deduce
that for all u ∈ R. ∣∣∣∣φX(y)− 1 +

1

2
σ2y2

∣∣∣∣ ≤ θ(y), (4.6.3)

where θ(y) = y2E
[
min

{
|X|2, |y| |X|

3

6

}]
. Note that

min

{
|X|2, |y| |X|

3

6

}
≤ |X|2

which is integrable by assumption. Also we have

lim
y→0

min

{
|X|2, |y| |X|

3

6

}
= 0,

and so by the dominated convergence theorem we can deduce the following
important property of θ which is that

lim
y→0

θ(y)

y2
= 0. (4.6.4)
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4.6.2 Weak Convergence

A sequence (µn) of probability measures on R is said to converge weakly to
a probability measure µ if

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx)

for all bounded continuous functions f defined on R. In the case where there
is a sequence of random variables (Xn) and instead of µn we have pXn and
also µ is the law pX of a random variable X we say that (Xn) converges
in distribution to X; so that convergence in distribution means the same
thing as weak convergence of the sequence of laws. It can be shown that
(Xn) converges to X in distribution if and only if limn→∞ FXn(x) = FX(x)
at every continuity point x of the c.d.f. F .

It can be shown that convergence in probability implies convergence in
distribution (and so, by Theorem 4.4.1 (2), almost sure convergence also
implies convergence in distribution.) For a proof, see Proposition 10.0.3 on
p.98 in Rosenthal.

There is an important link between the concepts of weak convergence and
characteristic functions which we present next.

Theorem 4.6.3 [The Continuity Theorem] Let (Xn) be a sequence of ran-
dom variables, where each Xn has characteristic function φn and let X be a
random variable having characteristic function φ. Then (Xn) converges to X
in distribution if and only if limn→∞ φn(u) = φ(u) for all u ∈ R.

Proof. We’ll only do the easy part here. Suppose (Xn) converges to X in
distribution. Then

φn(u) =

∫
R

cos(uy)pXn(dy) + i

∫
R

sin(uy)pXn(dy)

→
∫
R

cos(uy)pX(dy) + i

∫
R

sin(uy)pX(dy) = φ(u),

as n→∞, since both y → cos(uy) and y → sin(uy) are bounded continuous
functions. See e.g. Rosenthal pp.108-9 for the converse 2. �

4.7 The Central Limit Theorem

Let (Xn) be a sequence of i.i.d. random variables having finite mean µ and
finite variance σ2. We have already met the SLLN which tells us that Xn

2This reference is to the first edition. You’ll find it on pp. 132-3 in the second edition
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converges to µ a.s. as n → ∞. Note that the standard deviation (i.e. the
square root of the variance) of Xn is σ/

√
n which also converges to zero as

n → ∞. Now consider the sequence (Yn) of standardised random variables
defined by

Yn =
Xn − µ
σ/
√
n

=
Sn − nµ
σ
√
n

(4.7.5)

Then E(Yn) = 0 and Var(Yn) = 1 for all n ∈ N.

Its difficult to underestimate the importance of the next result. It shows
that the normal distribution has a universal character as the attractor of
the sequence (Yn). From a modelling point of view, it tells us that as you
combine together many i.i.d. different observations then they aggregate to
give a normal distribution. This is of vital importance in applied probability
and statistics. Note however that if we drop our standing assumption that
all the Xn’s have a finite variance, then this would no longer be true.

Theorem 4.7.1 [Central Limit Theorem] Let (Xn) be a sequence of i.i.d.
random variables each having finite mean µ and finite variance σ2. Then the
corresponding sequence (Yn) of standardised random variables converges in
distribution to the standard normal Z ∼ N(0, 1), i.e. for all a ∈ R

lim
n→∞

P (Yn ≤ a) =
1√
2π

∫ a

−∞
e−

1
2
y2dy.

Before we give the proof, we state a known fact from elementary analysis.
We know that for all y ∈ R,

lim
n→∞

(
1 +

y

n

)n
= ey.

Now for all y ∈ R, let (αn(y)) be a sequence of real (or complex) numbers
for which limn→∞ αn(y) = 0. Then we also have that for all y ∈ R

lim
n→∞

(
1 +

y + αn(y)

n

)n
= ey (4.7.6)

You may want to try your hand at proving this rigorously.

Proof. For convenience we assume that µ = 0 and σ = 1. Indeed if it isn’t
we can just replace Xn everywhere by (Xn − µ)/σ. Let ψ be the common
characteristic function of the Xns so that in particular ψ(u) = E(eiuX1) for
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all u ∈ R. Let φn be the characteristic function of Yn for each n ∈ N. Then
for all u ∈ R, using Theorem 4.6.1 we find that

φn(u) = E(eiuSn/
√
n)

= E
(
e
iu( 1√

n
(X1+X2+···+Xn)

)
= ψ(u/

√
n)n

= E
(
e
i u√

n
X1

)n
=

(
1 +

iu√
n
E(X1)− u2

2n
E(X2

1 ) +
θn(u)

n

)n
,

where by (4.6.3) and the same argument we used to derive (4.6.4),

|θn(u)| ≤ u2E
[
min

{
|X1|2,

|u|.|X1|3

6
√
n

}]
→ 0

as n→∞, for all u ∈ R.
Now we use (4.7.6) to find that

φn(u) =

(
1−

u2

2
− θn(u)

n

)n

→ e−
1
2
u2 as n→∞.

The result then follows by the Lévy continuity theorem (Theorem 4.6.3). �

The CLT may be extensively generalised. We mention just two results
here. If the i.i.d. sequence (Xn) is such that µ = 0 and E(|Xn|3) = ρ3 <∞,
the Berry-Esseen theorem gives a useful bound for the difference between
the cdf of the normalised sum and the cdf Φ of the standard normal. To be
precise we have that for all x ∈ R, n ∈ N:∣∣∣∣P ( Sn

σ
√
n
≤ x

)
− Φ(x)

∣∣∣∣ ≤ C
ρ√
nσ3

,

where C > 0.
We can also relax the requirement that the sequence (Xn) be i.i.d.. Con-

sider the triangular array (Xnk, k = 1, . . . , n, n ∈ N) of random variables
which we may list as follows:

X11

X21 X22

X31 X32 X33
...

...
...

Xn1 Xn2 Xn3 . . . Xnn
...

...
...

...
...
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We assume that each row comprises independent random variables. As-
sume further that E(Xnk) = 0 and σ2

nk = E(X2
nk) < ∞ for all k, n. De-

fine the row sums Sn = Xn1 + Xn2 + · · · + Xnn for all n ∈ N and define
τn = Var(Sn) =

∑n
k=1 σ

2
nk. Lindeburgh’s central limit theorem states that if

we have the asymptotic tail condition

lim
n→∞

n∑
k=1

1

τ 2
n

∫
|Xnk|≥ετn

X2
nk(ω)dP (ω) = 0,

for all ε > 0 then Sn

τn
converges in distribution to a standard normal as

n→∞.

The highlights of this last chapter have been the proofs of the law of
large numbers and central limit theorem. There is a third result that is often
grouped together with the other two as one of the key results about sums of
i.i.d. random variables. It is called the law of the iterated logarithm and it
gives bounds on the fluctuations of Sn for an i.i.d sequence with µ = 0 and
σ = 1. The result is quite remarkable. It states that

lim sup
n→∞

Sn√
2n log log(n)

= 1 a.s. (4.7.7)

This means that (with probability one) if c > 1 then only finitely many of
the events Sn > c

√
2n log log(n) occur but if c < 1 then infinitely many of

such events occur. You should be able to deduce from (4.7.7) that

lim inf
n→∞

Sn√
2n log log(n)

= −1 a.s.
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