
Chapter 5

Differentiation

5.1 Introduction

The processes of differentiation and integration constitute the two corner–
stones of the calculus which revolutionised mathematics (and its applica-
tions), starting from the groundbreaking work of Newton and Leibniz in the
seventeenth century. In this chapter we will focus on understanding differ-
entiation from a rigorous analytic viewpoint, using the knowledge that we
have gained about limits in previous chapters. Integration will be dealt with
next semester. Before we start this process let us remind ourselves what
differentiation is for.

The geometric motivation for differentiation is to find the slope or gradient
of the tangent to a curve at a point lying on it. If the curve is given by a
formula y = f(x), then the gradient of the tangent at the point (x, y) appears
to be well–approximated by the slope of a chord connecting the very nearby
points (x, y) and (x+ ∆x, y + ∆y). This slope is given by the ratio:

∆y

∆x
=
f(x+ ∆x)− f(x)

∆x
.

But to get from the slope of the chord to the slope of the tangent, it seems
that we must put ∆x = 0 and this gives us the meaningless ratio 0/0.

The dynamic motivation for differentiation is to find the instantaneous
rate of change of a one quantity with respect to another. Let us assume that
we are dealing with a physical quantity F (t) that changes as a function of
time t, for example F (t) could be position of a moving particle at time t,
in which case the required rate of change is the velocity, or F (t) could be
the charge on a conductor at time t, in which case the rate of change is the
current. Then over a very small time interval ∆t, the average rate of change
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is:
∆F (t)

∆t
=
F (t+ ∆t)− F (t)

∆t
,

and we again want to know what happens when ∆t = 0.
Of course, we now know that we must solve both of these problems by

taking a limit. When Newton first discovered the calculus, there was no
notion of “function”. He called a dynamical quantity like F (t) a “fluent”,
and its instantaneous rate of change was called a “fluxion”. Without the
modern ideas of either functions, or limits, he struggled to give a precise
meaning to the process of differentiation. The following is taken from his
essay “The Quadrature of Curves”, written in 16931:

“Fluxions are very nearly the Arguments of the Fluents, generated in
equal, but infinitely small parts of Time; and to speak exactly, are in the
Prime Ratio of the nascent Augments:...Tis the same thing if the Fluxions
be taken in the Ultimate Ratio of the Evanescent Parts.”

5.2 Differentiation as a Limit

Definition. Let f : R → R be a function with domain Df . We say that f

is differentiable at a ∈ Df if limx→a
f(x)− f(a)

x− a
exists (and is finite). In this

case we write

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
, (5.2.1)

and we call f ′(a) ∈ R, the derivative of f at a. We say that f is differentiable
on S ⊆ Df if it is differentiable at every point a ∈ S. Then the mapping
a→ f ′(a) defines a function from R to R with domain S which is called the
derivative of f , and denoted by f ′. We may then write S = Df ′ , so

Df ′ = {x ∈ Df ; f ′(x) exists}.

In applied mathematics, we may often write y = f(x), and write2 the
function f ′ as dy/dx. Then f ′(a) = dy

dx

∣∣
x=a

. When we do analysis, we do not
find the dy/dx notation so helpful; it is much more natural to work with f ′.

We can of course, iterate the notion of differentiability in the usual way.
Suppose that a ∈ Df ′ and that f ′ is differentiable at a, then we define the

1Quoted in P.E.Kopp, “Analysis”, p102.
2This notation was introduced by Leibniz.
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second derivative f ′′(a) of f at a by

f ′′(a) = (f ′)′(a).

More generally if n ∈ N with n > 2 we define the nth derivative of f at
a by

f (n)(a) = (f (n−1))′(a),

whenever the limit on the right hand side exists. We say that f is infinitely
differentiable or smooth at a if f (n)(a) exists (and is finite) for all n ∈ N. It is
also sometimes useful (especially when considering Taylor series, see section
5.4), to employ the notation f(a) = f (0)(a).

Example 5.1 If f(x) = c where c is R is constant, it is easy to check
directly from the definition (5.2.1) that Df ′ = Df = R, and f ′(a) = 0 for all
a ∈ R.

Example 5.2 Let f(x) = xn for x ∈ R, where n ∈ N is fixed. Then for
all a ∈ R, using the binomial theorem

f(a+ h)− f(a)

h
=

(a+ h)n − an

h

=
an + nan−1h+ 1

2
n(n− 1)an−2h2 + · · ·+ nahn−1 + hn − an

h

= nan−1 +
1

2
n(n− 1)an−2h+ · · ·+ nahn−2 + hn−1

→ nan−1 as h→ 0,

so f ′(x) = nxn−1 for all x ∈ R, and Df ′ = Df = R.

Next we turn our attention to the relationship between differentiability
and continuity.

Theorem 5.2.1. If f : R→ R is differentiable at a ∈ Df then f is continu-
ous at a.

Proof. We need to show that limx→a f(x) = f(a). For x 6= a, write

f(x)− f(a) =
f(x)− f(a)

x− a
.(x− a).

Since f is differentiable at a, limx→a
f(x)− f(a)

x− a
= f ′(a), and of course

limx→a(x− a) = 0. Hence by algebra of limits (Theorem 3.3.1),

limx→a
f(x)− f(a)

x− a
.(x−a) = 0. So limx→a(f(x)−f(a)) exists and equals

zero, and the result follows.
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The converse to Theorem 5.2.1, that every function that is continuous at
a is differentiable at a, is false. A counter-example is:

Example 5.3 Consider the function f(x) = |x| with Df = R. It is
continuous at every point in R. It is also easy to see that it is differentiable
at every x 6= 0. We’ll establish that it is not differentiable at zero, by showing
that left and right limits are different there. In fact

lim
h↑0

f(0 + h)− f(0)

h
= lim

h↑0

|h|
h

= lim
h↑0

−h
h

= −1.

lim
h↓0

f(0 + h)− f(0)

h
= lim

h↓0

|h|
h

= lim
h↓0

h

h
= 1.

Generalising the last example, we say that the mapping f : R → R

has a left derivative at a ∈ Df if f ′−(a) = limh↑0
f(a+ h)− f(a)

h
exists

(and is finite), and that it has a right derivative at a ∈ Df if f ′+(a) =

limh↓0
f(a+ h)− f(a)

h
exists (and is finite)

Theorem 5.2.2. The mapping f : R→ R is differentiable at a ∈ Df if and
only if both the left and right derivatives exist and are equal. In this case

f ′(a) = f ′−(a) = f ′+(a).

The proof is left for you to do as Problem 87.

5.3 Rules For Differentiation

The results in this section should all be familiar from MAS110, but now we
can make the proofs rigorous.

Theorem 5.3.1. Let f and g be functions from R to R that are differentiable
at a ∈ Df ∩Dg. Then

1. For each α, β ∈ R, the function αf + βg is differentiable at a and

(αf + βg)′(a) = αf ′(a) + βg′(a),

2. (The Product Rule) The function fg is differentiable at a and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).
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3. (The Quotient Rule) If g(a) 6= 0 then f/g is differentiable at a and(
f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)

g(a)2
.

Proof. 1. This is an easy application of the algebra of limits.

2. For all h 6= 0,

(fg)(a+ h)− (fg)(a)

h

=
f(a+ h)g(a+ h)− f(a)g(a+ h)

h
+
f(a)g(a+ h)− f(a)g(a)

h

=

(
f(a+ h)− f(a)

h

)
g(a+ h) + f(a)

(
g(a+ h)− g(a)

h

)
.

The result follows by taking limits as h→ 0 and using (5.2.1) and the
algebra of limits, together with the fact that at a, g is differentiable,
hence continuous by Theorem 5.2.1, and so limh→0 g(a+ h) = g(a).

3. First observe that by Problem 61, there exists δ > 0 so that g(x) 6= 0
for all x ∈ (a− δ, a+ δ). In the following, we will only consider h ∈ R
such that |h| < δ. Then

1

h

{(
f

g

)
(a+ h)−

(
f

g

)
(a)

}
=

1

h

{
f(a+ h)g(a)− f(a)g(a+ h)

g(a)g(a+ h)

}
=

1

g(a)g(a+ h)

{
f(a+ h)− f(a)

h
g(a)− f(a)

g(a+ h)− g(a)

h

}
,

and the result follows by algebra of limits, using the fact that (as in
(2)), limh→0 g(a+ h) = g(a).

Theorem 5.3.2 (The Chain Rule). Let f, g be functions from R to R for
which Ran(g) ⊆ Dom(f). Suppose that g is differentiable at a and that f is
differentiable at g(a). Then f ◦ g is differentiable at a and

(f ◦ g)′(a) = f ′(g(a))g′(a).
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Proof. We begin by arguing formally. For h ∈ R,

(f ◦ g)(a+ h)− (f ◦ g)(a)

h

=
f(g(a+ h))− f(g(a))

h

=
f(g(a+ h))− f(g(a))

g(a+ h)− g(a)

g(a+ h)− g(a)

h
,

but we cannot take limits at this stage, as the first factor appears to be
tending to 0/0. To overcome this problem, for each y ∈ Df ′ define Φy : R→
R by

Φy(k) =


f(y+k)−f(y)

k
if k 6= 0 and k + y ∈ Df

f ′(y) if k = 0,
0 otherwise

then limk→0 Φy(k) = f ′(y) = Φy(0), so Φy is continuous at 0. Now let
k(h) = g(a + h) − g(a). Since g is differentiable at a, it is continuous there
by Theorem 5.2.1 and so we can rewrite the above display as

(f ◦ g)(a+ h)− (f ◦ g)(a)

h
= Φg(a)(k(h))

g(a+ h)− g(a)

h
→ f ′(g(a))g′(a),

as h→ 0, where we have used Theorem 4.1.3 to deduce that limh→0 Φg(a)(k(h)) =
f ′(g(a)).

5.4 Turning Points and Rollé’s Theorem

A function f : R → R has a local minimum at a ∈ Df if there exists δ > 0
such that f(x) ≥ f(a) for all a − δ < x < a + δ, and a local maximum at
a ∈ Df if there exists δ > 0 such that f(x) ≤ f(a) for all a− δ < x < a+ δ.
An extreme point (or turning point) for f is a point in its domain that is
either a local maximum or a local minimum. Its important to distinguish
carefully between local maxima and minima and global maxima and minima,
when the latter exist. For example if f : [a, b] → R is continuous, then we
know by Theorem 4.3.4 that it attains both its supremum and infimum on
[a, b]. So these are the global maximum, and minimum respectively. But
they are not necessarily extreme points.

Example 5.4 Consider the function f : [−3, 2]→ R defined by

f(x) =

{
x2 if x ∈ [−1, 2]
x if x ∈ [−3,−1)
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Here the global maximum is attained at x = 2, the global minimum is
attained at x = −3. Neither of these are extreme points. There is also a
local minimum at x = 0.

Theorem 5.4.1. If f is differentiable at a ∈ Df and a is an extreme point
for f , then f ′(a) = 0.

Proof. Suppose that f has a local minimum at a (the argument in the case
of a local maximum is very similar), then there exists δ > 0 so that whenever
a− δ < x < a+ δ, then f(a) ≤ f(x). Hence

f(x)− f(a)

x− a
≤ 0 for all a− δ < x < a, and

f(x)− f(a)

x− a
≥ 0 for all a < x < a+ δ.

Taking one-sided limits as x→ a and using Problem 31, we deduce that
f ′−(a) ≤ 0 and f ′+(a) ≥ 0. But f is differentiable at a, so by Theorem 5.2.2,
f ′−(a) = f ′+(a) = f ′(a), and so we conclude that f ′(a) = 0, as required.

Of course the converse to Theorem 5.4.1 is false, consider for example
f(x) = x3. Then f ′(0) = 0 but 0 is neither a local maximum nor a local
minimum. We will not pursue the story of classifying extreme points further
here. You have seen this before in MAS110, and it is revisited in Problem
96. Instead we will use Theorem 5.4.1 to explore some new territory.

Theorem 5.4.2 (Rollé’s Theorem). Let f be continuous on [a, b] and dif-
ferentiable on (a, b) with f(a) = f(b). Then there exists c ∈ (a, b) such that
f ′(c) = 0.

Proof. If f is constant, the result is obvious, so assume that f takes at least
two distinct values. By Theorem 4.3.4, f is bounded on [a, b] and attains
both its supremum and infimum. It cannot attain both of these at the end-
points, as then f would be constant. So there must be a c ∈ (a, b) where
either the supremum or infimum is attained. But then c is an extreme point,
and so f ′(c) = 0 by Theorem 5.4.1.

5.5 Mean Value Theorems

The next result can be seen as a precursor to Taylor’s theorem. But it is also
an important result in its own right.
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Theorem 5.5.1 (The Mean Value Theorem). If f is continuous on [a, b]
and differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. For all x ∈ [a, b], define g(x) = f(x)− α(x− a), where α = f(b)−f(a)
b−a .

Then g is continuous on [a, b], and differentiable on (a, b). You can check
easily that g(a) = g(b) = f(a), and so we may apply Rollé’s theorem (The-
orem 5.4.2) to deduce that there exists c ∈ (a, b) such that g′(c) = 0. Hence
f ′(c) = α, as required.

The mean value theorem has many interesting consequences, for example:

Corollary 5.5.2. [Monotonicity Revisited] Suppose that f : R → R is con-
tinuous on [a, b] and differentiable on (a, b). If for all x ∈ (a, b) we have

f ′(x) ≥ 0, then f is monotonic increasing on [a, b],
f ′(x) > 0, then f is strictly monotonic increasing on [a, b],

f ′(x) ≤ 0, then f is monotonic decreasing on [a, b],
f ′(x) < 0, then f is strictly monotonic decreasing on [a, b].

Proof. We’ll just do the first of these, as the others are so similar. Choose
arbitrary a ≤ α < β ≤ b. By the mean value theorem (Theorem 5.5.1), there
exists c ∈ (α, β) so that

f(β)− f(α)

β − α
= f ′(c) ≥ 0.

Hence f(β) ≥ f(α) and so f is monotonic increasing, as required.

Corollary 5.5.2 becomes a powerful tool to study inverses, when used in
conjunction with Theorem 4.3.6. You can see this for yourself in Problem
93. We also have the following result:

Theorem 5.5.3. [Inverses Revisited] Suppose that f : R→ R is continuous
on [a, b] and differentiable on (a, b), and that f ′ is continuous at c ∈ (a, b).
If f ′(c) 6= 0 then

1. There exists δ > 0 so that f is invertible on [c − δ, c + δ], and f−1 is
continuous on (f(c−δ), f(c+δ)) if f−1(c) > 0, and on (f(c+δ), f(c−δ))
if f−1(c) < 0.
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2. The mapping f−1 is differentiable at f(c) and

(f−1)′(f(c)) =
1

f ′(c)
.

Proof. Assume without loss of generality, that f ′(c) < 0.

1. Since f ′ is continuous at c, by Problem 61 there exists δ > 0 so that
f ′(x) < 0 for all x ∈ (c − δ, c + δ), and we can certainly ensure (by
choosing a smaller δ, if necessary), that (c − δ, c + δ) ⊆ (a, b). By
Corollary 5.5.2, f is strictly decreasing on [c− δ, c+ δ], and the result
then follows from Theorem 4.3.7.

2. Let y = f(c), then for arbitrary d ∈ (c − δ, c) ∪ (c, c + δ), we have
f(d) 6= f(c) since f is invertible, hence injective. Write x = f(d).
Then

f−1(y)− f−1(x)

y − x
=

c− d
y − x

=
1

y−x
c−d

=
1

f(c)−f(d)
c−d

.

Now since f−1 is continuous on (f(c+ δ), f(c− δ)), as x→ y, we have
d→ c and so

lim
x→y

f−1(y)− f−1(x)

y − x
= lim

d→c

1
f(c)−f(d)

c−d

=
1

f ′(c)
,

as was required.

Note. Theorem 5.5.3 should be familiar to you from calculus as the rule

dx

dy
=

1
dy
dx

.

The next result is a useful variation on the “mean value theorem theme”.

Theorem 5.5.4 (Cauchy’s Mean Value Theorem). Let f and g each be con-
tinuous on [a, b] and differentiable on (a, b) with g′(x) 6= 0 for all x ∈ (a, b).
Then there exists c ∈ (a, b) so that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
. (5.5.2)
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Proof. As g′(x) 6= 0 for all x ∈ (a, b), we must have g(a) − g(b) 6= 0, by
Rollé’s theorem (Theorem 5.4.2). The rest of the proof follows along similar
lines to that of the mean value theorem, and is left to you to do in Problem
98.

Corollary 5.5.5 (l’Hôpital’s Rule). Suppose that f and g are each differen-
tiable on (a, b), with g′(x) 6= 0 for all x ∈ (a, b).

1. If c ∈ (a, b) with f(c) = g(c) = 0, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
,

whenever the limit on the right hand side is finite.

2. If limx↓a f(x) = limx↓a g(x) = 0, then

lim
x↓a

f(x)

g(x)
= lim

x↓a

f ′(x)

g′(x)
,

whenever the limit on the right hand side is finite.

3. If limx↑b f(x) = limx↑b g(x) = 0, then

lim
x↑b

f(x)

g(x)
= lim

x↑b

f ′(x)

g′(x)
,

whenever the limit on the right hand side is finite.

Proof. We’ll only prove (2) as the other proofs are so similar. Note that
since f and g are both differentiable on (a, b), they are continuous there by
Theorem 5.2.1. We extend f and g to the point a by defining f(a) = g(a) = 0.
Then f and g are both right continuous at a. We now apply Cauchy’s mean
value theorem (Theorem 5.5.4) on the interval [a, x] where a < x < b to
deduce that there exists r(x) ∈ (a, x) such that

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(r(x))

g′(r(x))
.

Now r(x) = a+ θ(x)(x− a) for some 0 < θ(x) < 1. Then

0 ≤ |r(x)− a| = |θ(x)(x− a)| < |x− a|,

so that (by the sandwich rule) limx↓a r(x) = a. Hence

lim
x↓a

f(x)

g(x)
= lim

x↓a

f ′(r(x))

g′(r(x))
= lim

x↓a

f ′(x)

g′(x)
.
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In Problem 101 you can prove a variation on l’Hôpital’s Rule, where
instead of converging to zero, the functions diverge to infinity at the point
of interest. We’ll use this in the next example:

Example 5.53

From e.g. MAS110, you know that for a > 0, the function f(x) = ax

may be defined as f(x) = ex loge(a) for x ∈ R. Similarly we may define
g(x) = xx = ex loge(x) for x > 0, But what happens as x ↓ 0? There appear to
be two competing tendencies, as for x > 0, 0x = 0, but x0 = 1. We use the
version of l’Hôpital’s Rule from Problem 101 and consider

lim
x↓0

x loge(x) = − lim
x↓0

− loge(x)

1/x

= − lim
x↓0

1/x

1/x2
= − lim

x↓0
x = 0,

So by continuity of the exponential function,

lim
x↓0

xx = lim
x↓0

ex loge(x) = 1.

5.6 Taylor’s Theorem

Let [a, b] be a given interval in R. For each n ∈ N we introduce the real vector
space Cn(a, b) (it is also a ring, and an algebra) of functions f : [a, b] → R
for which

• The nth derivative f (n) of f exists for all points in (a, b).

• f (n) is continuous on (a, b).

We may also consider the vector space (which is again, also a ring, and
an algebra) C∞(a, b) of functions that are infinitely differentiable on (a, b).
Clearly for all n ∈ N, we have

C∞(a, b) ⊆ Cn(a, b) ⊆ Cn−1(a, b) ⊆ · · · ⊆ C1(a, b) ⊆ C(a, b),

where C(a, b) is the space of continuous functions on (a, b).
Let f ∈ Cn(a, b), for some n ∈ N. Fix x0 ∈ (a, b) and consider the

real numbers f (k)(x0)/k!, for k = 0, 1, . . . , n. These are called the Taylor

3In this example, we will use properties of the exponential function which will be made
rigorous in Semester 2 work.
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coefficients of f at x0. We define a function T
(n)
f ∈ Cn(a, b) by

T
(n)
f (x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k

= f(x0) + f ′(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)2 + · · ·+ 1

n!
f (n)(x0)(x− x0)n.

The mapping T
(n)
f is called the Taylor polynomial of f of degree n around x0.

Theorem 5.6.1. [Taylor’s Theorem] Let f ∈ Cn+1(a, b) and x0 ∈ (a, b).
Then for all x ∈ (a, b),

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)k +Rn+1

f (x), (5.6.3)

where Rn+1
f (x) = f (n+1)(c)

(n+1)!
(x−x0)n+1, with c ∈ (x0, x) if x > x0 and c ∈ (x, x0)

if x < x0.
4

Proof. Assume for convenience that x > x0.
Define Mf : (x0, x)→ R by

Mf (x) =
(n+ 1)!

(x− x0)n+1
[f(x)− T (n)

f (x)], (5.6.4)

and g : [x0, x]→ R by

g(t) = −f(x) + f(t) +
n∑

k=1

f (k)(t)

k!
(x− t)k +

(x− t)n+1

(n+ 1)!
Mf (x).

Then g is clearly continuous on [x0, x] and differentiable on (x0, x). You
can easily check that g(x0) = g(x) = 0. Then by Rollé’s theorem (Theorem
5.4.2), there exists c ∈ (x0, x) with g′(c) = 0. Now for t ∈ (x0, x)

g′(t) = f ′(t)−
n∑

k=1

f (k)(t)

(k − 1)!
(x− t)k−1 +

n∑
k=1

f (k+1)(t)

k!
(x− t)k − (x− t)n

n!
Mf (x)

=
(x− t)n

n!
(f (n+1)(t)−Mf (x)).

Then g′(c) = 0 tells us that c is such that f (n+1)(c) = Mf (x), and then (5.6.3)
follows by straightforward algebra from (5.6.4).

4Note that c depends on x.
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Notes.

1. The termRn+1
f (x) = f(x)−T (n)

f (x) measures the error in approximating
f by its Taylor polynomial at f . It is called the remainder term of
degree n+ 1.

2. If 0 ∈ (a, b), we can take x0 = 0. In this special case, Theorem 5.6.1 is
called Maclaurin’s theorem.

Now suppose that f ∈ C∞(a, b) and that the series
∑n

k=0
f (k)(x0)

k!
(x−x0)k

converges for all x ∈ (a, b). If we may write

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k = lim

n→∞

n∑
k=0

f (k)(x0)

k!
(x− x0)k,

we say that f is represented by its Taylor series on (a, b). You will learn
more about convergence of infinite series of both numbers and functions in
Semester 2.
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