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Abstract. This paper constructs a class of martingale transforms based on Lévy processes on

Lie groups. From these, a natural class of bounded linear operators on the Lp-spaces of the

group (with respect to Haar measure) for 1 < p < ∞, are derived. On compact groups these
operators yield Fourier multipliers (in the Peter-Weyl sense) which include the second order Riesz

transforms, imaginary powers of the Laplacian, and new classes of multipliers obtained by taking

the Lévy process to have conjugate invariant laws. Multipliers associated to subordination of
the Brownian motion on the group are special cases of this last class. These results extend (and

the proofs simplify) those obtained in [10, 11] for the case of IRn. An important feature of this

work is the optimal nature of the Lp bounds.
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1. Introduction

Martingale inequalities have played an important role in applications of probability to problems
in analysis. Many of these applications rest on the celebrated Burkholder-Davis-Gundy inequalities
(commonly referred to these days as the “BDG inequalities”) which compare the Lp-norms of
martingales to the Lp-norms of their quadratic variations. For a survey describing some of the
early applications of these inequalities to several longstanding problems in analysis, we refer the
reader to [12] and the many references therein. A predecessor to the BDG inequalities which also
has had a huge number of applications in analysis is Burkholder’s 1966 inequality which proves
the Lp boundedness of martingale transforms [16]. In 1984 Burkholder extended the martingale
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transform inequality in various directions (including to the setting of Banach spaces with the
unconditional martingale difference sequence property, the so called “UMD spaces”) and obtained
the sharp constants [17]. In recent years the sharp martingale transform inequalities have been
widely applied to prove Lp-boundedness of Fourier multipliers on IRn, and in particular to the
study of multipliers arising from the Riesz transforms, the Beurling-Ahlfors operator, operators of
Laplace transform-type, and related singular integrals. We refer the reader to [8] for references to
this now very large literature and to some of the applications of these techniques to other problems
of interest. These include connections to a longstanding conjecture of T. Iwaniec on the Lp-norm
of Beurling-Ahlfors operator and a celebrated open problem of Morrey concerning rank-one convex
and quasiconvex functions [8, §5]. In [10] and [11] sharp martingale transform inequalities were used
to study a new class of Fourier multipliers which arise by certain natural transformations of Lévy
martingales associated to Lévy processes, i.e. the most general class of stochastic processes enjoying
stationary and independent increments (of which Brownian motion is a special case.) A novel
aspect of these new multipliers is that they are associated to processes whose paths contain jump
discontinuities and whose infinitesimal generators are non-local operators. A distinctive feature
of Fourier multiplier inequalities obtained from sharp martingale transform inequalities is that
in many instances the inequalities inherit the sharpness of the martingale transform inequalities.
This happens, for example, in the important case of second order Riesz transforms in IRn and other
multipliers with certain homogeneity properties [14], including some of the classical Marcinkiewicz-
type multipliers [37, p.110].

The purpose of this paper is to show that the construction of the operators in [10] and [11] can
be carried out in the general setting of Lie groups, leading to a new collection of linear operators
which are bounded on the Lp-spaces of the group with bounds that are optimal with respect to
p and which generalize in a natural way the classical Riesz transforms and the imaginary powers
of the Laplacian. The results in [11] have recently seen applications to Lp regularity for solutions
to non-local elliptic problems in Euclidean space; see [20, 21]. In the same way, we expect that
the results of this paper will be of interest to those working in the analysis of Lie groups and its
applications.

The paper is organized as follows. In §2.1, we recall the sharp Burkholder inequalities for
martingales under the assumption of subordination. While the discrete martingale versions serve
as motivation, the results in this paper rest on versions of Burkholder’s inequalities for continuous
time martingales. In §2.2, we review some of the basic facts about Lévy processes on Lie groups
and recall the fundamental theorem of Hunt which describes the structure of their infinitesimal
generators. In §3, we define the martingale transforms and prove that they are bounded operators
on Lp, for 1 < p < ∞ (Theorem 3.1). The martingale transforms lead naturally to operators
defined on the Lie group with Lp bounds which are exactly the same as those for martingale
transforms (Corollary 3.2 and Theorem 3.3). In fact, the operators on the Lie group are limits of
conditional expectations of the martingale transforms and for this reasons it is natural to call them
“projections of martingale transforms”. (For the latter point of view, we refer the reader to [13] and
[8, §3.10] where this is done in the setting of IRn.) In §4 we specialize our construction to compact
Lie groups where via the (non-commutative) Fourier transform we show that in various cases,
including second order Riesz transforms and operators of Laplace transform-type, our operators
are Fourier multipliers. We show that a large class of multipliers can be obtained from central Lévy
processes, i.e. those that have conjugate invariant laws. We obtain a new Lévy-Khintchine type
formula for such processes on compact, connected semi-simple Lie groups which was anticipated
in work of Liao [29, 30]. This formula plays an important role in the construction of multipliers
but may also be of independent interest. In §5 we revisit, as a special case of the results for
general Lie groups, the setting of IRn and derive the results of these two papers, rather directly,
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and without the technicalities of [11] and [10] concerning Lévy systems. But even more, our
construction yields a larger class of operators than those studied in [11] and [10] (Corollary 5.1).
When further specializing the transformations, these operators consequently yield a wider class of
Fourier multipliers (5.23) than those in [11] and [10]. Indeed the results of these papers are given
by the multipliers in (5.24) which are a sub-class of those presented in (5.23).

Notation. If G is a Lie group, B(G) is the Borel σ-algebra of G,C0(G) is the Banach space of
real-valued continuous functions on G that vanish at infinity (equipped with the usual supremum
norm), and C∞c (G) is the dense linear subspace of C0(G) comprising infinitely differentiable func-
tions of compact support. In any metric space (M,d), the open ball of radius r > 0 centered on
p ∈ M is denoted by Br(p). If a, b ∈ R, we define a ∨ b := max{a, b} and a ∧ b := min{a, b}. If
T > 0 and f : [0, T ]→ R has a left limit at 0 < s ≤ T we write f(s−) := limu↑s f(u) and we define
the jump in f at s by ∆f(s) = f(s)−f(s−). Functions that are right continuous on [0, T ) and have
left limits at every point in (0, T ] are said to be càdlàg (from the French “continue à droite et limité
à gauche”.) For such functions the set {s ∈ (0, T ); ∆f(s) 6= 0} is at most countable. Consequently

we obtain identities such as
∫ T
0
|f(s−)|pds =

∫ T
0
|f(s)|pds (for 1 ≤ p <∞) which we will use freely

within this paper. Mn(IR) denotes the space of all n × n matrices with real entries while Mn(C)
denotes the space of all n × n matrices with complex entries. If (M,M, µ) is a σ-finite measure
space, the norm of f ∈ L∞(M,M, µ;Mn(R)) is ||f || := ess.supx∈M sup{|f(x)v|; v ∈ IRn, |v| ≤ 1}.
The norm in L∞(M,M, µ;Mn(C)) is defined similarly.

2. Preliminaries

2.1. Sharp martingale inequalities. We begin by recalling the celebrated sharp martingale
transform inequalities of Burkholder. Let f = {fn, n ≥ 0} be a martingale (defined on some
probability space) with difference sequence d = {dk, k ≥ 0}, where dk = fk − fk−1 for k ≥ 1
and d0 = f0. Given a predictable sequence of random variables {vk, k ≥ 0} with vk ∈ [−1, 1] a.s.
for all k, the martingale difference sequence {vkdk, k ≥ 0} generates a new martingale called the
martingale transform of f and denoted here by g. We set ‖f‖p = supn≥0 ‖fn‖p. In [16] Burkholder
proved that for all 1 < p <∞, ‖g‖p ≤ Cp‖f‖p for some constant Cp depending only on p. In [17]
he sharpened this result by proving that under these assumptions

(2.1) ‖g‖p ≤ (p∗ − 1)‖f‖p,

for all 1 < p < ∞, where p∗ := max
{
p, p

p−1 ; 1 < p <∞
}

and that the constant p∗ − 1 is best

possible. In the sequel the constant p∗ − 1 will appear often.
Martingale inequalities of these type have a long history both in analysis and probability and

we refer the reader to [8] for some of this literature and applications. By considering dyadic
martingales, inequality (2.1) contains the classical inequality of Marcinkiewicz [31] and Paley [32]
for Paley-Walsh martingales with the optimal constant. That is, let {hk, k ≥ 0} be the Haar
system in the Lebesgue unit interval [0, 1) so that h0 = [0, 1), h1 = [0, 1/2) − [1/2, 1), h3 =
[0, 1/4)− [1/4, 1/2), h4 = [1/2, 3/4)− (3/4, 1), . . . , where the same notation is used for an interval
as for its indicator function. Then for any sequence {ak, k ≥ 0} of real numbers and any sequence
{εk, k ≥ 0} of signs,

(2.2)
∥∥∥ ∞∑
k=0

εkakhk

∥∥∥
p
≤ (p∗ − 1)

∥∥∥ ∞∑
k=0

akhk

∥∥∥
p
,

for 1 < p <∞. The constant p∗ − 1 is best possible here as well.
An obvious question that arises from these sharp results is: what happens to the best constant

when the predictable sequence is non-symmetric in the sense that it takes values in [0, 1] rather
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than in [−1, 1]? In [18], K.P. Choi used the techniques of Burkholder to identify the best constant
in this case as well. While Choi’s constant is not as explicit (and simple) as the p∗ − 1 constant of
Burkholder, one does have considerable information about it. More precisely, Choi’s result states
that if v = {vk, k ≥ 0} with vk ∈ [0, 1] a.s. for all k, then

(2.3) ‖g‖p ≤ cp‖f‖p,
for all 1 < p <∞ with the best constant cp satisfying

cp =
p

2
+

1

2
log

(
1 + e−2

2

)
+
α2

p
+ · · ·

where

α2 =

[
log

(
1 + e−2

2

)]2
+

1

2
log

(
1 + e−2

2

)
− 2

(
e−2

1 + e−2

)2

.

Motivated by the inequalities of Burkholder and Choi, the following definition was introduced
in [14].

Definition 1. Let −∞ < b < B <∞ and 1 < p <∞ be given and fixed. We define Cp,b,B as the
least positive number C such that for any real-valued martingale f and for any transform g of f
by a predictable sequence v = {vk, k ≥ 0} with values almost surely in [b, B], we have

(2.4) ||g||p ≤ C||f ||p.

For any 0 < a < ∞, we see that Cp,−a,a = a(p∗ − 1) by Burkholder’s inequality (2.1) and
Cp,0,a = a cp by Choi’s inequality (2.3). An easy computation gives that for b, B as above,

(2.5) max

{(
B − b

2

)
(p∗ − 1), max{|B|, |b|}

}
≤ Cp,b,B ≤ max{B, |b|}(p∗ − 1).

However, the lack of any general “scaling” or “translation” properties of Cp,b,B , outside the cases
[−a, a] and [0, a], makes it very difficult to compute the constant. For example, what is the value
of Cp,1,2?

For the applications in this paper we require versions of the above inequalities for martingales
indexed by continuous time. Suppose that (Ω,F ,P) is a complete probability space, equipped
with a right continuous filtration (Ft)t≥0 of sub-σ-algebras of F . We assume that F0 contains all
the events of probability 0. Let X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0} be adapted real valued
martingales which have right-continuous paths with left-limits, i.e., càdlàg martingales. We will
denote by [X,Y ] the quadratic co-variation process of X and Y . When X = Y we will simply write
[X] for [X,X]. We refer the reader to Dellacherie and Meyer [19] for details on the construction
and properties of [X,Y ] and [X]. Following [15] and [39], we say that Y is differentially subordinate
to X if |Y0| ≤ |X0| and ([X]t − [Y ]t)t≥0 is nondecreasing and nonnegative as a function of t. We
have the following extension of the Burkholder inequalities proved in [15] for martingales with
continuous paths (the so called “Brownian martingales”) and in [39] in the general case. More
precisely, if Y is differentially subordinate to X, then

(2.6) ‖YT ‖p ≤ (p∗ − 1)‖XT ‖p,
for all 1 < p <∞ and all T > 0. The constant p∗ − 1 is best possible.

Remark 2.1. We note here that equation (2.6) holds in the exact same form if the martingales take
values in a real or complex Hilbert space; see [15, 39]. This is important for martingale transforms
of complex valued functions such as the multipliers of Laplace transform-type given below. That
is, while we define martingale transforms with functions A that take values in the set of all n× n
matrices with real entries, Mn(R), we could replace them with functions with values in Mn(C). A
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similar statement applies to the functions ψ which we assume take values in IR. These changes to
complex valued matrices A and functions ψ would not affect the bound (p∗− 1) given in the results
that we obtain in this paper.

We end this section by recalling a result for non-symmetric subordination proved in [14] which
is the replacement for continuous time martingales of Choi’s result. This will be used below as
well. Suppose −∞ < b < B <∞ and Xt, Yt are two real valued martingales with right-continuous
paths and left-limits. Suppose further that |Y0| ≤ |X0| and that

(2.7)

[
B − b

2
X,

B − b
2

X

]
t

−
[
Y − b+B

2
X,Y − b+B

2
X

]
t

≥ 0

and is nondecreasing for all t ≥ 0. (We call this property “non-symmetric differential subordina-
tion”.) Then

(2.8) ||YT ||p ≤ Cp,b,B ||XT ||p, 1 < p <∞,

for all T > 0. The constant Cp,b,B is best possible.
Note that when B = a > 0 and b = −a, we have the case of (2.6).

2.2. Lévy processes on Lie groups. Let (Ω,F , P ) be a probability space and let G be a Lie
group of dimension n with neutral element e and Lie algebra g. If φ := (φ(t), t ≥ 0) is a stochastic
process taking values in G then the right increment of φ between s and t (where s < t) is the random
variable φ(s)−1φ(t). We say that φ is a (left) Lévy process on G if φ(0) = e (a.s.), φ has stationary
and independent right increments and φ is stochastically continuous in that limt→0 P (φ(t) ∈ A) = 0
for all A ∈ B(G) for which e /∈ A.

Let pt(A) := P (φ(t) ∈ A) for A ∈ B(G), t ≥ 0 so that pt is the law of φ(t). Then (pt, t ≥ 0)
is a weakly continuous convolution semigroup of probability measures on G for which p0 = δe.
Conversely given any such semigroup (pt, t ≥ 0), we can always construct a Lévy process (φt, t ≥ 0)
on the space of all paths from [0,∞) to G by using the celebrated Kolmogorov existence theorem.

For each t ≥ 0, f ∈ C0(G), σ ∈ G, define Ptf(σ) =
∫
G
f(στ)pt(dτ). Then (Pt, t ≥ 0) is a

(positivity preserving) C0-contraction semigroup which commutes with left translations. That is,
LσPt = PtLσ for all t ≥ 0, σ ∈ G, where Lσf(τ) = f(σ−1τ). In fact (Pt, t ≥ 0) is also a (almost
everywhere positivity preserving) C0-contraction semigroup on Lp(G) for all 1 ≤ p < ∞ where G
is equipped with a right-invariant Haar measure (see e.g. [28, 3].)

We continue to work in C0(G) and let L denote the infinitesimal generator of (Pt, t ≥ 0). So
L is a densely defined closed linear operator. We denote its domain by Dom(L). We next give a
precise description of L that is due to Hunt [26] (see also §3.1 in [30].)

Let (Xj , 1 ≤ j ≤ n) be a fixed basis of g and define a dense linear manifold C2(G) in C0(G)
by C2(G) := {f ∈ C0(G);Xif ∈ C0(G) and XiXjf ∈ C0(G) for all 1 ≤ i, j ≤ n}. There exist
functions xi ∈ C∞c (G), 1 ≤ i ≤ n so that xi(e) = 0, Xixj(e) = δij and (x1, . . . , xn) are canonical
co-ordinates in a neighbourhood of e.

A measure ν defined on B(G) is called a Lévy measure whenever ν({e}) = 0,

(2.9)

∫
U

(
n∑
i=1

xi(τ)2

)
ν(dτ) <∞ and ν(G− U) <∞,

for any Borel neighbourhood U of e.
For the rest of the paper we will use the Einstein summation convention whereby we sum over

repeated upper and lower indices.

Theorem 2.2 (Hunt). With the notation introduced above we have
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(1) C2(G) ⊆ Dom(L).

(2) For each σ ∈ G, f ∈ C2(G),

Lf(σ) = biXif(σ) + aijXiXjf(σ)

+

∫
G

(f(στ)− f(σ)− xi(τ)Xif(σ))ν(dτ),(2.10)

where b = (b1, . . . bn) ∈ Rn, a = (aij) is a non-negative-definite, symmetric n×n real-valued
matrix and ν is a Lévy measure on G.

Conversely, any linear operator with a representation as above is the restriction to C2(G) of the
generator corresponding to a unique convolution semigroup of probability measures.

We call (b, a, ν) the characteristics of the Lévy process φ. From now on we will equip F with
a filtration (Ft, t ≥ 0) of sub-σ-algebras and we will always assume that a given Lévy process φ
is adapted to this filtration. That is, φ(t) is Ft-measurable for each t ≥ 0. We say that a Lévy
process φ is càdlàg if there exists Ω ∈ F with P (Ω) = 1 such that the mappings t → φ(t)(ω) are
right continuous with left limits existing for all ω ∈ Ω.

Clearly any càdlàg Lévy process φ is a Markov process with respect to its own filtration and so
for each f ∈ C2(G), t ≥ 0,

f(φ(t))− f(e)−
∫ t

0

Lf(φ(s))ds

is a martingale which we denote by Mf (t) and which can be written as

(2.11) Mf (t) = M c
f (t) +Md

f (t)

where Md
f (t) and M c

f (t) are the discontinuous and continuous parts, respectively, see [19]. In [6]
these martingales were found to be stochastic integrals against a Poisson random measure on G
and a Brownian motion in g, respectively so that φ is in fact the unique solution of the following
stochastic differential equation

f(φ(t)) = f(e) +

∫ t

0

Xif(φ(s−))dBia(s) +

∫ t

0

Lf(φ(s−))ds+

+

∫ t+

0

∫
G

(f(φ(s−)σ)− f(φ(s−))Ñ(ds, dσ)(2.12)

for each f ∈ C2(G), t ≥ 0. Here Ba = (Ba(t), t ≥ 0) is an n-dimensional Brownian motion of mean

zero and covariance matrix given by Cov(Bia(t)Bja(t)) = 2taij for t ≥ 0, 1 ≤ i, j ≤ n, and Ñ is the
compensator defined for each t ≥ 0, E ∈ B(G) by

Ñ(t, E) = N(t, E)− tν(E),

where N is a Poisson random measure on IR+ × G with intensity measure Leb×ν which is inde-
pendent of B. In fact,

N(t, A) = #{0 ≤ s ≤ t,∆φ(s) ∈ A}
for each t ≥ 0 and any Borel set A bounded away from e, where ∆φ(s) = φ(s−)−1φ(s) denotes the
jump of the process at time s > 0.

Fix T > 0 and let F : G×G→ R be continuous and ξ ∈ L∞(R+×G,Leb× ν) be such that the

mapping s→ ξ(s, τ) is left continuous for all τ ∈ G and assume that
∫ T
0

∫
G
E(|F (φ(s), τ)|2)ν(dτ)ds <
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∞. We note that (see e.g. Lemma 4.2.2 in [2], p.221) Itô’s isometry in the framework of Poisson
random measures yields,

E

(∫ T

0

F (φ(s−), τ)ξ(s, τ)Ñ(ds, dτ)

)2
 =

∫ T

0

∫
G

E(|F (φ(s), τ)|2)|ξ(s, τ)|2ν(dτ)ds

≤ ||ξ||2
∫ T

0

∫
G

E(|F (φ(s), τ)|2)ν(dτ)ds,(2.13)

In the sequel we will find it convenient to work with the standard Brownian motion B =
(B(t), t ≥ 0) in Rn with covariance Cov(Bi(t)Bj(t)) = tδij . To implement this we choose an n×n
matrix Λ such that ΛΛT = 2a and define Yi ∈ g by Yi = ΛjiXj for 1 ≤ i ≤ n. Then the integral
with respect to Brownian motion in (2.12) may be rewritten∫ t

0

Xif(φ(s−))dBia(s) =

∫ t

0

Yif(φ(s−))dBi(s)

=

∫ t

0

∇Y f(φ(s−)) · dB(s),

where ∇Y := (Y1, . . . , Yn) and · is the usual inner product in Rn.
So far we have always assumed that the Lévy process φ starts at e with probability one. In

the sequel we will want to change the starting point to arbitrary ρ ∈ G and we can achieve this
by defining the càdlàg Markov process φ(ρ)(t) = ρφ(t) for each t ≥ 0. Note that the process
φ(ρ) := (φ(ρ)(t), t ≥ 0) retains stationary and independent right increments. It follows easily from
(2.12) that (with probability one)

f(φ(ρ)(t)) = f(ρ) +

∫ t

0

∇Y f(φ(ρ)(s−)) · dB(s) +

∫ t

0

Lf(φ(ρ)(s−))ds+

+

∫ t+

0

∫
G

(f(φ(ρ)(s−)σ)− f(φ(ρ)(s−))Ñ(ds, dσ),(2.14)

for each f ∈ C2(G), t ≥ 0.

3. Martingale transforms and their projections

In this section we will construct a family of operators which act on Lp(G). These operators will
arise as “projections” of martingale transforms and will be bounded on Lp(G) for all 1 < p <∞.
To begin we fix T > 0 and choose f ∈ C∞c (G), σ ∈ G. Then for all 0 ≤ t ≤ T , we define

(3.1) M
(T )
f (σ, t) := (PT−tf)(σφ(t)) = (PT−tf)(φσ(t))

Later on we will also require the notation M
(T )
f (σ) := M

(T )
f (σ, T ) = f(σφ(T )).

Applying Itô’s formula to the process given by (3.1) and using (2.14), we find that

M
(T )
f (σ, t) = (PT f)(σ) +

∫ t

0

∇Y (PT−sf)(φ(σ)(s−)) · dB(s)

+

∫ t+

0

∫
G

[(PT−sf)(φ(σ)(s−)τ)− (PT−sf)(φ(σ)(s−))]Ñ(ds, dτ),(3.2)
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and hence M
(T )
f,σ := (M

(T )
f (σ, t), 0 ≤ t ≤ T ) is an L2-martingale starting at (PT f)(σ). We fix

a right-invariant Haar measure mR on G and note that inside integrals we will always write
mR(dg) = dg.

Definition 2. Let A ∈ L∞(R+ ×G,Leb×mR;Mn(R)) and ψ ∈ L∞(R+ ×G×G,Leb×mR × ν).
We assume that (A,ψ) are regular in that the mappings (s, ρ) → A(s, ρ) and (s, ρ) → ψ(s, ρ, τ)
(for all τ ∈ G) are continuous and that ||A|| ∨ ||ψ|| ≤ 1. For each f ∈ C∞c (G), σ ∈ G, t ≥ 0 we set

M
(T ;A,ψ)
f (σ, t) =

∫ t

0

A(T − s, φ(σ)(s−))∇Y (PT−sf)(φ(σ)(s−)) · dB(s)

+

∫ t+

0

∫
G

{
(PT−sf)(φ(σ)(s−)τ)− (PT−sf)(φ(σ)(s−)

}
(3.3)

×
{
ψ(T − s, φ(σ)(s−), τ)

}
Ñ(ds, dτ).

This gives the new martingale

M
(T ;A,ψ)
f,σ := (M

(T ;A,ψ)
f (σ, t), 0 ≤ t ≤ T )

which we shall call the martingale transform of M
(T )
f,σ by (A,ψ).

Computing the quadratic variations of both (M
(T )
f (σ, t) and its transform M

(T ;A,ψ)
f (σ, t) (see

e.g. equation (4.16) in [2] p.257) we find that

[(M
(T )
f (σ, ·)]t =

∫ t

0

|∇Y (PT−sf)(φ(σ)(s−))|2ds

+

∫ t+

0

∫
G

[(PT−sf)(φ(σ)(s−)τ)− (PT−sf)(φ(σ)(s−))]2N(ds, dτ)(3.4)

while

[(M
(T ;A,ψ)
f (σ, ·)]t =

∫ t

0

|A(T − s, φ(σ)(s−))∇Y (PT−sf)(φ(σ)(s−))|2ds

+

∫ t+

0

∫
G

{
[(PT−sf)(φ(σ)(s−)τ)− (PT−sf)(φ(σ)(s−))]2

}
×

{
[ψ(T − s, φ(σ)(s−), τ)]2

}
N(ds, dτ).(3.5)

From these formulas, the fact that 0 = |M (T ;A,ψ)
f (σ, 0)| ≤ |M (T )

f (σ, 0)|, and our assumption that

||A||∨||ψ|| ≤ 1, it follows that M
(T ;A,ψ)
f,σ is differentially subordinate to M

(T )
f,σ . Now, for 1 < p <∞,

set

||X||p =

(∫
G

E(|X(σ)|p)dσ)

) 1
p

,

for X ∈ Lp(Ω×G). Applying Burkholder’s inequality in the form given by the inequality (2.6) at
time T , we obtain

(3.6) ||M (T ;A,ψ)
f ||p ≤ (p∗ − 1)||M (T )

f ||p.
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But using Fubini’s theorem and the right invariance of the Haar measure we see that

||M (T )
f ||

p
p = ||f(·φ(T )||pp

=

∫
G

∫
G

|f(στ)|ppT (dτ)dσ(3.7)

=

∫
G

|f(σ)|pdσ = ||f ||pp.

We summarize the above calculations in the following

Theorem 3.1. Let A ∈ L∞(R+ ×G,Leb×mR;Mn(R)) and ψ ∈ L∞(R+ ×G×G,Leb×mR × ν)

with (A,ψ) regular and ||A|| ∨ ||ψ|| ≤ 1. For any 0 < T < ∞, the map f → M
(T ;A,ψ)
f defines a

linear operator from Lp(G)→ Lp(Ω×G), 1 < p <∞, with

(3.8) ‖M (T ;A,ψ)
f ‖p ≤ (p∗ − 1)‖f‖p,

for 1 < p <∞. In particular, the bound is independent of T .

Now let q = p
p−1 and for given g ∈ C∞c (G), we define a linear functional ΛT ;A,ψ

g on C∞c (G) by

the prescription

(3.9) ΛT ;A,ψ
g (f) =

∫
G

E(M
(T ;A,ψ)
f (σ)M (T )

g (σ))dσ

Using Hölder’s inequality, inequality (3.6) and equality (3.7), we obtain

|ΛT ;A,ψ
g (f)| ≤ ||M (T ;A,ψ)

f ||p||M (T )
g ||q

≤ (p∗ − 1)||M (T )
f ||p||M

(T )
g ||q

= (p∗ − 1)||f ||p||g||q.(3.10)

Hence ΛT ;A,ψ
g extends to a bounded linear functional on Lp(G) and by duality, there exists a

bounded linear operator STA,ψ on Lp(G) for which

ΛT ;A,ψ
g (f) =

∫
G

STA,ψf(σ)g(σ)dσ,

for all f ∈ Lp(G), g ∈ Lq(G) and with ||STA,ψ||p ≤ (p∗ − 1). We summarize this in the following

Corollary 3.2. Let A ∈ L∞(R+×G,Leb×mR;Mn(R)) and ψ ∈ L∞(R+×G×G,Leb×mR× ν)
with (A,ψ) regular and ||A|| ∨ ||ψ|| ≤ 1. For any 0 < T <∞, the map f → STA,ψf defines a linear

operator from Lp(G)→ Lp(G), 1 < p <∞, with

(3.11) ‖STA,ψf‖p ≤ (p∗ − 1)‖f‖p,

for 1 < p <∞. In particular, the bound is independent of T .

Next we probe the structure of (3.9) using Itô’s isometry for stochastic integrals driven by both
Brownian motion and a Poisson random measure (see (2.13) for the latter) with the aim of letting
T → ∞ in STA,ψ. Again, using Fubini’s theorem and right invariance of Haar measure as in the

derivation of (3.7), we obtain
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ΛT ;A,ψ
g (f) =

∫
G

∫ T

0

E{A(T − s, φ(σ)(s−))∇Y (PT−sf)(φ(σ)(s−))

× ·∇Y (PT−sg)(φ(σ)(s−))}dsdσ

+

∫
G

∫
G

∫ T

0

E{[(PT−sf)(φ(σ)(s−)τ)− (PT−sf)(φ(σ)(s−))]

× [(PT−sg)(φ(σ)(s−)τ)− (PT−sg)(φ(σ)(s−))]

× ψ(T − s, φ(σ)(s−), τ)}dsν(dτ)dσ

=

∫ T

0

∫
G

A(T − s, σ)∇Y (PT−sf)(σ) · ∇Y (PT−sg)(σ)dσds

+

∫ T

0

∫
G

∫
G

[(PT−sf)(στ)− (PT−sf)(σ)][(PT−sg)(στ)− (PT−sg)(σ)]

× ψ(T − s, σ, τ)ν(dτ)dσds

=

∫ T

0

∫
G

A(s, σ)∇Y (Psf)(σ) · ∇Y (Psg)(σ)dσds

+

∫ T

0

∫
G

∫
G

[(Psf)(στ)− (Psf)(σ)][(Psg)(στ)− (Psg)(σ)]

× ψ(s, σ, τ)ν(dτ)dσds(3.12)

Choosing

A(s, σ) =
∇Y (Psf)(σ)⊗∇Y (Psg)(σ)

|∇Y (Psf)(σ)| |∇Y (Psg)(σ)|
,

for s ≥ 0, σ ∈ G and observing that ‖A‖ = 1, inequality (3.10) (with ψ ≡ 0) gives that

(3.13)

∫ T

0

∫
G

|∇Y (Psf)(σ)| |∇Y (Psg)(σ)|dσds ≤ (p∗ − 1)||f ||p||g||q.

Thus the first integral in (3.12) converges absolutely as T →∞ and

(3.14)

∫ ∞
0

∫
G

|∇Y (Psf)(σ)| |∇Y (Psg)(σ)|dσds ≤ (p∗ − 1)||f ||p||g||q.

We now consider the second integral in (3.12). This time we take A ≡ 0 and

ψ(s, σ, τ) = sign((Psf)(στ)− Psf(σ))((Psg)(στ)− Psg(σ)))

and obtain that∫ T

0

∫
G

∫
G

|(Psf)(στ)− Psf(σ))||(Psg)(στ)− Psg(σ))|ν(dτ)dσds ≤ (p∗ − 1)||f ||p||g||q,

with the right hand side independent of T and hence we can also let T →∞ in the second integral
of (3.12).

We summarize the above result in the following

Theorem 3.3. Let A ∈ L∞(R+ ×G,Leb×mR;Mn(R)) and ψ ∈ L∞(R+ ×G×G,Leb×mR × ν)
with (A,ψ) regular and ||A|| ∨ ||ψ|| ≤ 1. There exists a bounded linear operator SA,ψ on Lp(G),
1 < p <∞, for which
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∫
G

SA,ψf(σ)g(σ)dσ =

∫ ∞
0

∫
G

A(s, σ)∇Y (Psf)(σ) · ∇Y (Psg)(σ)dσds

+

∫ ∞
0

∫
G

∫
G

[(Psf)(στ)− (Psf)(σ)][(Psg)(στ)− (Psg)(σ)](3.15)

× ψ(s, σ, τ)ν(dτ)dσds,

for all f, g ∈ C∞c (G). Furthermore, for all f ∈ Lp(G) and g ∈ Lq(G), 1
p + 1

q = 1,

(3.16)
∣∣∣ ∫
G

SA,ψf(σ)g(σ)dσ
∣∣∣ ≤ (p∗ − 1)‖f‖p ‖g‖q

and

(3.17) ‖SA,ψf‖p ≤ (p∗ − 1)‖f‖p.

Suppose A ∈ L∞(R+×G,Leb×mR;Mn(R)) is symmetric with the property that for all ξ ∈ Rn,

(3.18) b|ξ|2 ≤ A(s, σ)ξ · ξ ≤ B|ξ|2

for all (s, σ) ∈ R+ × G, −∞ < b < B < ∞. Then by a simple computation (see [14], §4) the

martingale Y = M
(T ;A,0)
f,σ is subordinate to the martingale X = M

(T )
f,σ in the sense of inequality

(2.7). From the construction of our operators SA,ψ we have (in this case the assumption ||A|| ≤ 1
is no longer needed):

Theorem 3.4. Let A ∈ L∞(R+ ×G,Leb×mR;Mn(R)) be continuous, symmetric and satisfying
(3.18). Then for all 1 < p <∞ and f ∈ Lp(G),

(3.19) ‖SA,0f‖p ≤ Cp,b,B‖f‖p,

where Cp,b,B is the constant in the inequality (2.8)

As we will see (§5 below), the inequalities (3.17) and (3.19) are sharp in the universal sense that
no constant strictly smaller than p∗ − 1, in the case of (3.17), and smaller than Cp,b,B , in the case
of (3.19), can replace these values for every Lie group. This is due to the fact that the inequalities
include the bounds for Riesz transforms in IRn and other homogeneous multipliers discussed in
[14]. This does not rule out the possibility that for some subclass of Lie groups the bounds can be
improved.

4. Compact groups: Fourier multipliers

In this section we are interested in cases of a compact Lie group where the operators SA,ψ are
Fourier multipliers. Thus from now on we will assume that G is a compact connected Lie group.
Then every (left or right) Haar measure on G is bi-invariant and also finite. In the sequel we will

always assume that Haar measure is normalized to have total mass one. Let Ĝ be the unitary dual of
G, i.e. the set of all equivalence classes (modulo unitary equivalence) of irreducible representations

of G. In the sequel we will often identify a class in Ĝ with a representative element. We will also

require the set Ĝ0 = G − {π0} where π0 is the trivial representation of G acting on C. The set

Ĝ is countable and each π ∈ Ĝ is finite dimensional, so that that there exists a finite dimensional
complex Hilbert space Vπ, having dimension dπ such that for each σ ∈ G, π(σ) is a unitary matrix.
We define the co-ordinate functions πij(σ) = π(σ)ij for σ ∈ G, 1 ≤ i, j ≤ dπ. We have πij ∈ C∞(G)

and the celebrated Peter-Weyl theorem tells us that {
√
dππij ; 1 ≤ i, j ≤ dπ, π ∈ Ĝ} is a complete
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orthonormal basis for L2(G,C). For each f ∈ L2(G,C), we define its non-commutative Fourier

transform to be the matrix f̂(π) defined by

f̂(π)ij =

∫
G

f(σ)πij(σ
−1)dσ,

for each 1 ≤ i, j ≤ dπ. We will have need of the following version of the Plancherel theorem (which
can be found in e.g. [23], Theorem 6.4.2, p.110)

(4.1)

∫
G

f(σ)g(σ)dσ =
∑
π∈Ĝ

dπtr(f̂(π)ĝ(π)∗),

for f, g ∈ L2(G,C). In particular if T is a bounded linear operator on L2(G,C) we have

(4.2)

∫
G

Tf(σ)g(σ)dσ =
∑
π∈Ĝ

dπtr(T̂ f(π)ĝ(π)∗).

We say that the operator T is a Fourier multiplier if for each π ∈ Ĝ there exists a dπ × dπ
complex matrix mT (π) so that

(4.3) T̂ f(π) = mT (π)f̂(π), with mT (π0) = 0.

We call the matrices (mT (π), π ∈ Ĝ) the symbol of the operator T .1

Given π ∈ Ĝ we obtain the derived representation dπ of the Lie algebra g from the identity

π(exp(X)) = edπ(X),

for each X ∈ g. Then dπ(X) is a skew-hermitian matrix acting in Vπ. We now equip g with
an Ad-invariant metric (which induces a bi-invariant Riemannian metric on G.) From now on
{X1, . . . , Xn} will be an orthonormal basis for g with respect to the given metric. We define the
Casimir operator Ωπ by Ωπ :=

∑n
i=1 dπ(Xi)

2. Then it can be shown (see e.g. [23] Corollary 6.7.2,
p.122) that Ωπ = −κπIπ where Iπ is the identity matrix acting on Vπ and κπ ≥ 0 (with κπ = 0
if and only if π is the trivial representation). The Laplace-Beltrami operator ∆ =

∑n
i=1X

2
i is an

essentially self-adjoint operator in L2(G,C) with domain C∞(G,C) having discrete spectrum with

(4.4) ∆πij = −κππij ,

for all π ∈ Ĝ, 1 ≤ i, j ≤ dπ.

4.1. Brownian motion. Brownian motion (with twice the usual auto-covariance) on a Lie group
G is the Lévy process having characteristics (b, I, 0). It is well known (see e.g. [22], §6) that it can
be obtained as the unique solution of the Stratonovich stochastic differential equation

(4.5) dφ(t) =
√

2Xi(φ(t)) ◦ dBi(t),
with initial condition φ(0) = e (a.s.) In this case (Pt, t ≥ 0) is the heat semigroup with generator
L = ∆.

The following is well-known but we include a short proof for the reader’s convenience:

Proposition 4.1. For all t ≥ 0, π ∈ Ĝ, f ∈ L2(G,C)

P̂tf(π) = e−tκπ f̂(π).

1See [33] for a monograph treatment of pseudo differential operators and their symbols on compact Lie groups

and [34] for a study of Fourier multipliers from this perspective. For probabilistic developments in the spirit of the
present work, see [4, 5].
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Proof. It follows from (4.4) that for all 1 ≤ i, j ≤ dπ,

Ptπij = e−tκππij .

But then

P̂tf(π)ij =

∫
G

Ptf(g)π(g−1)ijdg

=

∫
G

Ptf(g)π(g)jidg

=

∫
G

f(g)Ptπ(g)jidg

= e−tκπ
∫
G

f(g)π(g−1)ijdg

= e−tκπ f̂(π)ij ,

as required. �

4.2. Second order Riesz transforms. The first order Riesz transform in the direction X ∈ g

is the operator RX = X(−∆)−
1
2 . It is shown in [7] (using the martingale inequalities from [15])

that if G is endowed with a bi-invariant Riemannian metric and |X| = 1 then RX is a bounded

operator on Lp(G) and ||RX ||p ≤ Bp for all 1 < p <∞, where Bp := cot
(

π
2p∗

)
is the “Pichorides

constant” (i.e. the Lp norm of the Hilbert transform on the real line.) We write Rj := RXj , for

1 ≤ j ≤ n, so that RiRj = XiXj∆
−1. Let C be a n × n matrix with ||C|| ≤ 1. We define the

second order Riesz transform (see also [24, 9]) R
(2)
C to be

R
(2)
C :=

n∑
i,j=1

CjiRiRj =

n∑
i,j=1

CjiXiXj ∆−1.

We will show that R
(2)
C is precisely an operator of the form SA,ψ where ψ = 0. First we show

that R
(2)
C is a Fourier multiplier. Indeed this follows by using (4.2) and computing for C∞(G)∫

G

R
(2)
C f(σ)g(σ)dσ =

∑
i,j=1

Cji
∑
π∈Ĝ0

dπtr(R̂iRjf(π)ĝ(π)∗)

= −
∑
i,j=1

Cji
∑
π∈Ĝ0

dπ
1

κπ
tr(dπ(Xi)dπ(Xj)f̂(π)ĝ(π)∗)

=
∑
π∈Ĝ0

dπtr(ΩC(π)f̂(π)ĝ(π)∗),

where for all π ∈ Ĝ0,

ΩC(π) := − 1

κπ

n∑
i,j=1

Cjidπ(Xi)dπ(Xj).

Hence we conclude that R
(2)
C is a Fourier multiplier with symbol ΩC(·).

We connect to the work of the previous section by taking ψ = 0 and φ to be a Brownian motion.
We write SA = SA,0 and we take A to be a constant matrix. Using (3.15), (4.2) and Proposition
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4.1, we obtain, for f, g ∈ C∞(G),∫
G

SAf(σ)g(σ)dσ = 2

∫ ∞
0

∫
G

A∇X(Psf)(σ) · ∇X(Psg)(σ)dσds

= 2

n∑
i,j=1

Aij

∫ ∞
0

∫
G

Xi(Psf)(σ)Xj(Psg)(σ)dσds

= 2

n∑
i,j=1

Aij

∫ ∞
0

∑
π∈Ĝ

dπe
−2sκπ tr(dπ(Xi)f̂(π)ĝ(π)∗(−dπ(Xj)))ds

= −
n∑

i,j=1

Aij
∑
π∈Ĝ0

dπ
1

κπ
tr(dπ(Xj)dπ(Xi)f̂(π)ĝ(π)∗)

=
∑
π∈Ĝ0

dπtr(ΩA(π)f̂(π)ĝ(π)∗),

and so we deduce that R
(2)
C = SC .

The following is a corollary of the above discussion and Theorem 3.3, inequality (3.16).

Corollary 4.1. Consider the second order Riesz transform defined by

(4.6) R
(2)
C :=

n∑
i,j=1

CjiRiRj =

n∑
i,j=1

CjiXiXj∆
−1

with symbol

(4.7) ΩC(π) := − 1

κπ

n∑
i,j=1

Cjidπ(Xi)dπ(Xj).

Then for 1 < p <∞, f ∈ Lp(G),

(4.8) ‖R(2)
C f‖p ≤ (p∗ − 1)‖f‖p.

The next corollary follows from Theorem 3.4. We record it here in the form stated in [14] in the
case of Rn (see also [9] for compact Lie groups). Note that we here drop the condition ||C|| ≤ 1 as
in Theorem 3.4.

Corollary 4.2. Let C be an n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Then
for 1 < p <∞, f ∈ Lp(G),

(4.9) ‖R(2)
C f‖p ≤ Cp, λ1,λd‖f‖p,

where Cp, λ1,λd is the constant in (2.4). In particular, if J ( {1, 2, . . . , n}, then

(4.10)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈J

R2
jf

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ Cp,0,1‖f‖p = cp‖f‖p, 1 < p <∞,

where cp is the Choi constant in (2.3).

We remark that in the case of IRn both bounds above are sharp, see [14] and [24].
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4.3. Multipliers of Laplace transform-type. We continue to work with Brownian motion (as
in the previous subsection) and this time we take A(s) := A(s, ·) to be a time-dependent real-valued
function. Then (3.15), integration by parts and (4.2) yields for all f, g ∈ C∞(G),∫

G

SAf(σ)g(σ)dσ = 2

∫ ∞
0

∫
G

A(s)∇X(Psf)(σ) · ∇X(Psg)(σ)dσds,

= −2

∫ ∞
0

∫
G

A(s)∆P2sf(σ)g(σ)dσds.

= 2

∫ ∞
0

A(s)
∑
π∈Ĝ

dπκπe
−2sκπ tr(f̂(π)ĝ(π)∗)ds.

Hence for all π ∈ Ĝ we have

(4.11) ŜAf(π) =

(∫ ∞
0

2κπe
−2sκπA(s)ds

)
f̂(π)

and SA is an operator of Laplace transform-type (see [38] p.58, [8], §3.11). It is clearly a Fourier
multiplier in the sense of (4.3). A special case of particular interest is obtained by taking A(s) =

(2s)−iγ

Γ(1− iγ)
, where γ ∈ R. In this case an easy computation shows that the symbol is mSA(π) = κiγπ

and so SA = (−∆)iγ is an imaginary power of the Laplacian (see also [36]) and we have the
following corollary of Theorem 3.3, inequality (3.16). (Note that for this case we need to apply the
Burkholder inequality for complex valued martingales using the results in [15] or [39], as indicated
in Remark 2.1). Since |A(s)| = |Γ(1− iγ)| for all s ≥ 0, we have

Corollary 4.3. For 1 < p <∞, f ∈ Lp(G), we have

(4.12) ‖(−∆)iγf‖p ≤
p∗ − 1

|Γ(1− iγ)|
‖f‖p.

This bound was first proved in IRn in [25, Eq. (7.3)]. For further discussion on this result in IRn

and comparison to previous known bounds, see [8]. For a discussion of the sharp nature of this
bound in IRn, see [25, §7].

4.4. Subordinate Brownian motion. In this section we will consider an operator of the form
Sψ := S0,ψ which is built from the non-local part of the Lévy process. To this end, let (T (t), t ≥ 0)
be a subordinator, i.e. an almost surely non-decreasing real-valued Lévy process (so T (t) takes
values in R+ with probability one for all t ≥ 0) . Then we have (see e.g. [35]) that E(e−uT (t)) =
e−th(u) for all u > 0, t ≥ 0 where h : (0,∞)→ R+ is a Bernstein function for which limu→0 h(u) = 0.
Hence h must take the form

(4.13) h(u) = cu+

∫
(0,∞)

(1− e−uy)λ(dy)

where c ≥ 0 and λ is a Borel measure on (0,∞) satisfying
∫
(0,∞)

(1∧ y)λ(dy) <∞. It is convenient

to define h at 0 by continuity, i.e. h(0) = 0. We denote the law of T (t) by ρt, for each t ≥ 0.
It is well-known that (see e.g. [1, 4]) that if φ is a Lévy process in G and (T (t), t ≥ 0) is an
independent subordinator with Bernstein function h, then the process φT = (φT (t), t ≥ 0) is
again a Lévy process in G where φT (t) := φ(T (t)) for all t ≥ 0. Let (Pt, t ≥ 0) be the usual
semigroup of convolution operators on C(G) that is associated to the process φ and (Pht , t ≥ 0)
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be the corresponding semigroup of convolution operators associated to the process φT . Then it is
well-known (and easily verified) that

(4.14) Pht f(σ) =

∫
(0,∞)

Psf(σ)ρt(ds)

for all t ≥ 0, f ∈ C(G), σ ∈ G. In the sequel we will always take φ to be Brownian motion on G as
given by (4.5). The following is implicit in [4] but we give a proof for completeness.

Proposition 4.2. If (Pt, t ≥ 0) is the heat semigroup on G then for all f ∈ C(G), π ∈ Ĝ, t ≥ 0,

P̂ht f(π) = e−th(κπ)f̂(π).

Proof. Using Fubini’s theorem we have from (4.14) and Proposition 4.1

P̂ht f(π) =

∫
G

∫
(0,∞)

Psf(σ)ρt(ds)π(σ−1)dσ

=

∫
(0,∞)

(∫
G

Psf(σ)π(σ−1)dσ

)
ρt(ds)

=

∫
(0,∞)

e−sκπρt(ds)f̂(π)

= e−th(κπ)f̂(π). �

We now take A = 0 in (3.15) and take the Lévy process to be of the form φT as just described.
For simplicity we also assume that ψ only depends on the jumps of the process and so we write
ψ(τ) := ψ(·, ·, τ) for each τ ∈ G. As before, we assume that ψ is regular and that ‖ψ‖ ≤ 1. In this
case we have ∫

G

Sψf(σ)g(σ)dσ =

∫ ∞
0

∫
G

∫
G

[(Phs f)(στ)− (Phs f)(σ)](4.15)

× [(Phs g)(στ)− (Phs g)(σ)]ψ(τ)ν(dτ)dσds

Now using (4.2) and Proposition 4.2 we obtain∫
G

Sψf(σ)g(σ)dσ =

∫ ∞
0

∫
G

∑
π∈Ĝ

dπe
−2sh(κπ)tr[(π(τ)− Iπ)f̂(π)ĝ(π)∗(π(τ)∗ − Iπ)]

× ψ(τ)ν(dτ)ds

=

∫
G

∑
π∈Ĝ0

dπ
1

2h(κπ)
tr[(2Iπ − π(τ)− π(τ)∗)f̂(π)ĝ(π)∗]ψ(τ)ν(dτ)

and so Sψ is a Fourier multiplier with

(4.16) mSψ (π) =
1

2h(κπ)

∫
G

(2Iπ − π(τ)− π(τ)∗)ψ(τ)ν(dτ),

for π ∈ Ĝ0. From Theorem 3.3 we obtain

Corollary 4.4. Let Sψ be the operator with Fourier multiplier given by (4.16).

(1) If ‖ψ‖ ≤ 1, then

(4.17) ‖Sψf‖p ≤ (p∗ − 1)‖f‖p,
for all 1 < p <∞, f ∈ Lp(G).
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(2) If ψ : G→ [b, B], with −∞ < b < B <∞, then

(4.18) ‖Sψf‖p ≤ Cp,b,B‖f‖p,
for all 1 < p <∞, f ∈ Lp(G), where Cp,b,B is the constant in (2.4).

To compare with results in [11] (see e.g. equation (32) therein), note that since G is both
compact and connected, exp : g→ G is onto and so for every σ ∈ G, σ = exp(X) for some X ∈ g.
Then π(σ) = ei(−idπ(X)) where we note that the matrix −idπ(X) is hermitian. Then we can write
2Iπ − π(σ)− π(σ)∗ = 2(Iπ − cos(idπ(X)). Let ν̃ := ν ◦ exp so ν̃ is a Borel measure on g and define

ψ̃ : g→ R by ψ̃ := ψ ◦ exp. Then in this case we obtain for π ∈ Ĝ0,

mSψ (π) =
1

h(κπ)

∫
g

(Iπ − cosh(dπ(X)))ψ̃(X)ν̃(dX).

4.5. Multipliers associated to central Lévy processes. We say that a Lévy process (φ(t), t ≥
0) is central (or conjugate invariant) if its law pt is a central measure for all t ≥ 0, i.e. for all
A ∈ B(G), σ ∈ G

pt(σAσ
−1) = pt(A).

Such processes have been investigated in [29] and [4]. It follows that the Lévy measure ν is also a
central measure (see [29] p.1567.) Recall that if µ is a Borel probability measure on a compact Lie
group G then its Fourier transform (or characteristic function2) is defined by µ̂(π) :=

∫
G
π(σ)µ(dσ)

for all π ∈ Ĝ. Moreover the matrices {µ̂(π), π ∈ Ĝ} uniquely determine µ (see e.g. Theorem 1 in

[27].) Returning to Lévy processes, it is easy to verify that for all t ≥ 0, π ∈ Ĝ, 1 ≤ i, j ≤ dπ we
have

(4.19) p̂t(π)ij = Ptπij(e).

Now suppose that the Lévy process (φ(t), t ≥ 0) is central. By a slight generalization of the

argument of Proposition 2.1 in [4] we deduce that for all π ∈ Ĝ, there exists απ ∈ C with <(απ) ≤ 0
so that

(4.20) p̂t(π) = etαπIπ.

It follows easily from this that for all t ≥ 0, π ∈ Ĝ, f ∈ C(G)

(4.21) P̂tf(π) = etαπ f̂(π)

We now apply (3.15). For simplicity we again consider the case where A is a constant matrix and
ψ = ψ(τ) depends only on the jumps of the Lévy process. In this case we can apply Plancherel’s
theorem (4.2) using very similar arguments to those applied in sections 4.1 and 4.4 to deduce that

SA,ψ is Fourier multiplier. Indeed for all f ∈ C∞(G), π ∈ Ĝ we have

ŜA,ψf(π) = mA,ψ(π)f̂(π),

where for π ∈ Ĝ0,

mA,ψ(π) =
1

<(απ)

n∑
i,j=1

Ajidπ(Xi)dπ(Xj)

− 1

2<(απ)

∫
G

(2Iπ − π(τ)− π(τ)∗)ψ(τ)ν(dτ).

2Note that in this paper we adopt the analysts convention when defining the Fourier transform of a function and

the probabilists convention for that of a measure. We emphasize that no mathematical inconsistencies arise from
these choices.
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Two of our previously considered examples are in fact special cases of this formula. Indeed for
the second order Riesz transform we have ψ = 0 and απ = −κπ while for subordinated Brownian
motion, A = 0 and απ = −h(κπ).

Under further constraints, we can find an explicit general formula for απ. The following is
essentially contained in Theorem 4 (c) p.1567 in [29]. It gives a Lévy-Khintchine type formula
for the Fourier transform of the law of a central Lévy process. We will need the group character

χπ(·) := tr(π(·)) and the normalized character %π(·) := 1
dπ
χπ(·) for each π ∈ Ĝ.

Theorem 4.5. Let (φ(t), t ≥ 0) be a central Lévy process on a compact, connected semi-simple
Lie group.

(1) If the Lévy measure ν has a finite first moment, i.e.
∫
G
|xi(σ)|ν(dσ) <∞ for all 1 ≤ i ≤ n,

then for all π ∈ Ĝ,

απ = −cκπ +

∫
G

(%π(τ)− 1)ν(dτ),

where c ≥ 0.
(2) If the central Lévy process is symmetric (i.e. pt(A) = pt(A

−1) for all t ≥ 0, A ∈ B(G))

then for all π ∈ Ĝ,

απ = −cκπ +

∫
G

(<(%π(τ))− 1)ν(dτ),

where c ≥ 0.

Proof.

(1) It follows from Propositions 4.4 and 4.5 in [30] p.99 that for all f ∈ C2(G), σ ∈ G,

Lf(σ) = c∆f(σ) +

∫
G

(f(στ)− f(σ))ν(dτ).

For each π ∈ Ĝ, define the matrix L(π) by L(π)ij := (Lπij)(e) for 1 ≤ i, j ≤ dπ. Then

L(π) = −cκπIπ +

∫
G

(π(τ)− Iπ)ν(dτ),

and hence by (4.19), p̂t(π) = etL(π) for all t ≥ 0. Comparing this identity with (4.20), we
deduce that

απIπ = −cκπIπ +

∫
G

(π(τ)− Iπ)ν(dτ),

and we obtain the required result on taking the trace (in Vπ) of both sides of this last
equation.

(2) In this case for all π ∈ Ĝ, απ ∈ R. By Theorem 2.2 (v) in [3], for all σ ∈ G, f ∈ C2(G) we
have

Lf(σ) = c∆f(σ) +
1

2

∫
G

(f(στ)− 2f(σ) + f(στ−1))ν(dτ),

and so for all π ∈ Ĝ

L(π) = −cκπIπ +
1

2

∫
G

(π(τ)− 2Iπ + π(τ−1))ν(dτ).

The result then follows by the argument of (1) using the fact that χπ(τ−1) = χπ(τ) for all
τ ∈ G.

�
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5. IRn, revisited

In this section we apply the results of §3 to Euclidean space IRn and compute the Fourier
multipliers for the operators SA,ψ explicitly under some assumptions on A and ψ. When A is
constant and ψ is just a function of the jumps this was already done in [10] and [11]. Nevertheless,
the formulas derived in §3 elucidate these results further and provide a more uniform approach to
these Lévy-Fourier multipliers.

We start by recalling various standard notations and facts about Fourier transforms and Lévy

processes in IRn. We use the following normalization for the Fourier transform f̂ of f ∈ S(Rn)
where S(Rn) is the usual Schwartz space of rapidly decreasing functions on Rn. For all ξ ∈ Rn,

(5.1) f̂(ξ) =

∫
IRn

e2πiξ·xf(x)dx

and for all x ∈ Rn,

(5.2) f(x) =

∫
IRn

e−2πix·ξ f̂(ξ)dξ

so that Plancherel’s identity takes the form

(5.3)

∫
IRn

f(x)g(x)dx =

∫
IRn

f̂(ξ)ĝ(ξ)dξ,

for f, g ∈ S(Rn). With this normalization, if ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
= (∂1, . . . , ∂n) denotes the

standard gradient in IRn, then

(5.4) ∂̂jf(ξ) = (−2πi)ξj f̂(ξ) and ∇̂f(ξ) = (−2πi)ξf̂(ξ).

Recall that a Borel measure ν on IRn with ν({0}) = 0 and

(5.5)

∫
IRn

|y|2

1 + |y|2
ν(dy) <∞

is called a Lévy measure. (Note that the definition of the Lévy measure in IRn coincides with that
given by (2.9) in §2.2 for general Lie groups.) We denote a Lévy process in IRn by (X(t), t ≥ 0).
The celebrated Lévy-Khintchine formula [2] guarantees the existence of a triple (b, a, ν) such that
the characteristic function of the process is given by E

[
eiξ·X(t)

]
= etρ(ξ), where

(5.6) ρ(ξ) = ib · ξ − aξ · ξ +

∫
IRn

[
ei ξ·y − 1− i(ξ · y) IB1(0)(y)

]
ν(dy).

Here, b = (b1, . . . , bn) ∈ IRn, a = (aij) is a non-negative n × n symmetric matrix, IB1(0) is the
indicator function of the unit ball B1(0) ⊂ IRn centered at the origin and ν is a Lévy measure
on IRn. We remark that the Lévy-Khintchine formula may be deduced as a corollary of Hunt’s
theorem (Theorem 2.2) in the case where the group G is Rn (see [26], §6, pp.281-3.) We decompose
ρ into its real and imaginary parts so that

(5.7) ρ(ξ) = <ρ(ξ) + i=ρ(ξ),

where

(5.8) <ρ(ξ) = −aξ · ξ +

∫
IRn

[ cos (ξ · y)− 1 ] ν(dy)

and

(5.9) =ρ(ξ) = b · ξ +

∫
IRn

[
sin (ξ · y)− (ξ · y) IB1(0)(y)

]
ν(dy).
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We note that the convergence of the integrals in (5.8) and (5.9) follows immediately from (5.5).
Also, observe that <ρ(−ξ) = <ρ(ξ) and that <ρ(ξ) ≤ 0.

With this notation, the semigroup of the Lévy process (X(t), t ≥ 0) acting on f ∈ S(IRn) is
given as a pseudo-differential operator by

Ptf(x) = E[f(X(t) + x)] = E
(∫

IRn
e−2πi(X(t)+x)·ξ f̂(ξ)dξ

)
=

∫
IRn

etρ(−2πξ) e−2πix·ξ f̂(ξ)dξ.(5.10)

Since S(Rn) ⊆ Dom(L) we also obtain the pseudo-differential operator representation

(5.11) Lf(x) =

∫
IRn

ρ(−2πξ)e−2πix·ξ f̂(ξ)dξ.

Thus

(5.12) P̂tf(ξ) = etρ(−2πξ) f̂(ξ).

Also, using (5.4) we can write L as

Lf(x) = bi∂if(x) + aij∂i∂jf(x)

+

∫ [
f(x+ y)− f(x)− y · ∇f(x)IB1(0)(y)

]
ν(dy).

A detailed account of these results may be found in [2] §3.2.2, pp.163-9.
With Λ such that ΛΛT = 2a, we set, as in §3, ∇Y = Λ∇. With this notation we have the

following corollary of Theorem 3.3.

Corollary 5.1. Suppose A ∈ L∞(R+ × IRn,Leb ×mR;Mn(R)) and ψ ∈ L∞(R+ × IRn × IRn; IR)
with (A,ψ) regular and ||A|| ∨ ||ψ|| ≤ 1. There exists a bounded linear operator SA,ψ on Lp(IRn)
where 1 < p <∞ for which∫

IRn
SA,ψf(x)g(x)dx =

∫ ∞
0

∫
IRn

A(s, x)∇Y (Psf)(x) · ∇Y (Psg)(x)dxds

+

∫ ∞
0

∫
IRn

∫
IRn

[(Psf)(x+ y)− (Psf)(x)][(Psg)(x+ y)− (Psg)(x)](5.13)

× ψ(s, x, y)ν(dy)dxds,

for all f, g ∈ C∞c (G). Furthermore, for all f ∈ Lp(IRn) and g ∈ Lq(IRn), 1
p + 1

q = 1,

(5.14)
∣∣∣ ∫

IRn
SA,ψf(x)g(x)dx

∣∣∣ ≤ (p∗ − 1)‖f‖p ‖g‖q

and

(5.15) ‖SA,ψf‖p ≤ (p∗ − 1)‖f‖p.

Let us now suppose that A = A(s) is only a function of s (time) and that ψ(s, y) is only a
function of s (time) and y (jumps). Set

(5.16) I =

∫ ∞
0

∫
IRn

A(s)∇Y (Psf)(x) · ∇Y (Psg)(x)dxds

and

(5.17) II =

∫ ∞
0

∫
IRn

∫
IRn

[(Psf)(x+ y)− (Psf)(x)][(Psg)(x+ y)− (Psg)(x)]ψ(s, y)ν(dy)dxds.
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Applying Plancherel’s identity, (5.3), we find that

I =

∫
IRn

{
4π2

∫ ∞
0

[A(s)Λξ · Λξ]e2s<ρ(2πξ)ds
}
f̂(ξ)ĝ(ξ)dξ(5.18)

=

∫
IRn

m1(ξ)f̂(ξ)ĝ(ξ)dξ,

where

(5.19) m1(ξ) = 4π2

∫ ∞
0

[A(s)Λξ · Λξ]e2s<ρ(2πξ)ds.

In the same way,

II =

∫
IRn

{∫
IRn

∫ ∞
0

e2s<ρ(2πξ)|e−2π iξ·y − 1|2ψ(s, y)dsν(dy)

}
f̂(ξ)ĝ(ξ)dξ

=

∫
IRn

{
2

∫
IRn

∫ ∞
0

e2s<ρ(2πξ) (1− cos(2πξ · y))ψ(s, y)dsν(dy)

}
f̂(ξ)ĝ(ξ)dξ(5.20)

=

∫
IRn

m2(ξ)f̂(ξ)ĝ(ξ)dξ,

where

(5.21) m2(ξ) = 2

∫
IRn

(1− cos(2πξ · y))

(∫ ∞
0

e2s<ρ(2πξ)ψ(s, y)ds

)
ν(dy)

Thus under the assumption that A = A(s) and ψ = ψ(s, y) we conclude that the operator SA,ψ
is a Fourier multiplier with

(5.22) ŜA,ψf(ξ) = m(ξ)f̂(ξ),

where

m(ξ) = 4π2

∫ ∞
0

[A(s)Λξ · Λξ]e2s<ρ(2πξ)ds

+ 2

∫
IRn

∫ ∞
0

e2s<ρ(2πξ) (1− cos(2πξ · y))ψ(s, y)dsν(dy)(5.23)

Recalling from (5.8) that

−2<ρ(2πξ) = 8π2aξ · ξ + 2

∫
IRn

(1− cos (2πξ · y)) ν(dy)

and using the fact that 2aξ · ξ = Λξ · Λξ, we see that under the assumption ||A|| ∨ ||ψ|| ≤ 1,
m ∈ L∞(IRn) and ‖m‖∞ ≤ 1. Furthermore, if the matrix A has constant entries and the function
ψ only depends on y, then a simple computation gives that

m(ξ) =
4π2AΛξ · Λξ + 2

∫
IRn

(1− cos (2πξ · y))ψ(y)ν(dy)

8π2aξ · ξ + 2
∫
IRn

(1− cos (2πξ · y)) ν(dy)
.(5.24)

Note that m(ξ) = m̃(2πξ), where

m̃(ξ) =
1
2

(
ΛTAΛ

)
ξ · ξ +

∫
IRn

(1− cos (ξ · y))ψ(y)ν(dy)

aξ · ξ +
∫
IRn

(1− cos (ξ · y)) ν(dy)
.

From the Remark 2.1 we know that the above multipliers have the same bounds if the matrix
has complex entires and the function ψ takes values in the complex plane. We summarize these
results in the following
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Theorem 5.2. Let A ∈Mn(C) and ψ : IRn → C be such that ‖A‖ ∨ ‖ψ‖ ≤ 1. Suppose a ∈Mn(IR)
is symmetric and non-negative definite. Let Λ ∈ Mn(IR) be such that ΛΛT = 2a. Then the L∞

function

(5.25) m(ξ) =
1
2

(
ΛTAΛ

)
ξ · ξ +

∫
IRn

(1− cos (ξ · y))ψ(y)ν(dy)

aξ · ξ +
∫
IRn

(1− cos (ξ · y)) ν(dy)
,

where ν is a Lévy measure, defines an Lp-multiplier operator SA,ψ with

(5.26) ‖SA,ψf‖p ≤ (p∗ − 1)‖f‖p,

for all f ∈ Lp(IRn), 1 < p <∞. The inequality is sharp.

This formula gives the multipliers studied in [10] and [11]. For several concrete examples of
classical multipliers that arise from this formula, see [8] and [10]. In particular, if we take ν = 0,
a = I and we write A = (Ajk), then

m(ξ) =

∑n
j,k=1Ajkξjξk

|ξ|2
.

With the right choice of A, this gives the multiplier m(ξ) =
ξ2j−ξ

2
k

|ξ|2 . This corresponds to the second

order Riesz transforms R2
k −R2

j which by [24] (see also [14]) has norm (p∗ − 1). Hence the bound
is sharp.
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