Generalised Spherical Functions and Levy-Khinchine Formula on Groups and Symmetric Spaces

David Applebaum

School of Mathematics and Statistics, University of Sheffield, UK

Talk at "Wales Mathematical Colloquium 2015", Gregynog.

18-20 May 2015

Talk based on joint work with Tony Dooley (Bath)

Annales de l'Institut Henri Poincaré (Prob Stat) 51, 599 (2015)

May 2015 1 / 33

- Background on "structural" probability theory, the Lévy-Khintchine (LK) formula.
- Spherical functions on symmetric spaces.
- The LK formula for spherically symmetric measures.
- Generalised spherical functions and the LK formula for general measures.

Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space.

Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space. A *random variable X* is a measurable function from (Ω, \mathcal{F}) to (E, \mathcal{E}) . Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space. A *random variable* X is a measurable function from (Ω, \mathcal{F}) to (E, \mathcal{E}) . The *law* or *distribution* of X is the probability measure p_X on (E, \mathcal{E}) , given by $p_X(A) = P(X^{-1}(A))$, for $A \in \mathcal{E}$. Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space. A *random variable* X is a measurable function from (Ω, \mathcal{F}) to (E, \mathcal{E}) . The *law* or *distribution* of X is the probability measure p_X on (E, \mathcal{E}) , given by $p_X(A) = P(X^{-1}(A))$, for $A \in \mathcal{E}$. In elementary discrete probability we take $(E, \mathcal{E}) = (S, \mathcal{P}(S))$, where S is a finite set. Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space. A *random variable* X is a measurable function from (Ω, \mathcal{F}) to (E, \mathcal{E}) . The *law* or *distribution* of X is the probability measure p_X on (E, \mathcal{E}) , given by $p_X(A) = P(X^{-1}(A))$, for $A \in \mathcal{E}$. In elementary discrete probability we take $(E, \mathcal{E}) = (S, \mathcal{P}(S))$, where S is a finite set.

To study Brownian motion, Lévy processes etc. we take $(E, \mathcal{E}) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)).$

.

Let (Ω, \mathcal{F}, P) be a probability space and (E, \mathcal{E}) be a measurable space. A *random variable* X is a measurable function from (Ω, \mathcal{F}) to (E, \mathcal{E}) . The *law* or *distribution* of X is the probability measure p_X on (E, \mathcal{E}) , given by $p_X(A) = P(X^{-1}(A))$, for $A \in \mathcal{E}$. In elementary discrete probability we take $(E, \mathcal{E}) = (S, \mathcal{P}(S))$, where S

In elementary discrete probability we take $(E, \mathcal{E}) = (S, \mathcal{P}(S))$, where S is a finite set.

To study Brownian motion, Lévy processes etc. we take $(E, \mathcal{E}) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)).$

To investigate chance phenomena interacting with interesting mathematical structures, E might be a Banach space, a group or a manifold.

Let *G* be a locally compact Hausdorff group with identity *e*. Let $\mathcal{M}(G)$ be the set of all Borel (Radon) probability measures on *G*.

Let *G* be a locally compact Hausdorff group with identity *e*. Let $\mathcal{M}(G)$ be the set of all Borel (Radon) probability measures on *G*. The *convolution* of μ_1 and μ_2 in *G* is the unique $\mu_1 * \mu_2 \in \mathcal{M}(G)$ such that for all $f \in C_c(G)$:

$$\int_G f(g)(\mu_1*\mu_2)(dg) = \int_G \int_G f(gh)\mu_1(dg)\mu_2(dh).$$

 $(\mathcal{M}(G), *)$ is a monoid with unit δ_e (Dirac mass at *e*).

Let *G* be a locally compact Hausdorff group with identity *e*. Let $\mathcal{M}(G)$ be the set of all Borel (Radon) probability measures on *G*. The *convolution* of μ_1 and μ_2 in *G* is the unique $\mu_1 * \mu_2 \in \mathcal{M}(G)$ such that for all $f \in C_c(G)$:

$$\int_G f(g)(\mu_1*\mu_2)(dg) = \int_G \int_G f(gh)\mu_1(dg)\mu_2(dh).$$

 $(\mathcal{M}(G), *)$ is a monoid with unit δ_e (Dirac mass at *e*).

We say that $\mu \in \mathcal{M}(G)$ is *infinitely divisible* if for each $n \in \mathbb{N}$, there exists $\mu^{\frac{1}{n}} \in \mathcal{M}(G)$ so that

$$\mu = \mu^{\frac{1}{n}} * \mu^{\frac{1}{n}} * \cdots * \mu^{\frac{1}{n}}$$
. (*n* times)

Let *G* be a locally compact Hausdorff group with identity *e*. Let $\mathcal{M}(G)$ be the set of all Borel (Radon) probability measures on *G*. The *convolution* of μ_1 and μ_2 in *G* is the unique $\mu_1 * \mu_2 \in \mathcal{M}(G)$ such that for all $f \in C_c(G)$:

$$\int_G f(g)(\mu_1*\mu_2)(dg) = \int_G \int_G f(gh)\mu_1(dg)\mu_2(dh).$$

 $(\mathcal{M}(G), *)$ is a monoid with unit δ_e (Dirac mass at *e*).

We say that $\mu \in \mathcal{M}(G)$ is *infinitely divisible* if for each $n \in \mathbb{N}$, there exists $\mu^{\frac{1}{n}} \in \mathcal{M}(G)$ so that

$$\mu = \mu^{\frac{1}{n}} * \mu^{\frac{1}{n}} * \cdots * \mu^{\frac{1}{n}}$$
. (*n* times)

Let $G = \mathbb{R}^n$. Fourier transform: $\widehat{\mu}(y) = \int_{\mathbb{R}^n} e^{-ix \cdot y} \mu(dx)$, for all $y \in \mathbb{R}^n$.

A B A A B A

Theorem

The measure $\mu \in \mathcal{M}(\mathbb{R}^n)$ is infinitely divisible if and only if for all $y \in \mathbb{R}^n$,

 $\widehat{\mu}(\mathbf{y}) = \exp\left(-\eta(\mathbf{y})\right),$

Theorem

The measure $\mu \in \mathcal{M}(\mathbb{R}^n)$ is infinitely divisible if and only if for all $y \in \mathbb{R}^n$,

$$\widehat{\mu}(\mathbf{y}) = \exp\left(-\eta(\mathbf{y})\right),$$

where

$$\eta(\mathbf{y}) = i\mathbf{b} \cdot \mathbf{y} + \frac{1}{2}\mathbf{A}\mathbf{y} \cdot \mathbf{y} \\ + \int_{\mathbb{R}^n} (1 - e^{-i\mathbf{u} \cdot \mathbf{y}} - i\mathbf{u} \cdot \mathbf{y} \mathbf{1}_{B_1}(\mathbf{y}))\nu(d\mathbf{y})$$

• • • • • • • • • • • • •

where the *characteristics* (b, A, ν) are as follows:

where the *characteristics* (b, A, ν) are as follows:

- $b \in \mathbb{R}^n$,
- A is a non-negative definite, symmetric real-valued $n \times n$ matrix,
- The *Lévy measure* μ is a Borel (σ finite) measure on \mathbb{R}^n for which,

$$u(\{0\})=0$$
 , $\int_{\mathbb{R}^n}(1\wedge |u|^2)\nu(du)<\infty.$

where the *characteristics* (b, A, ν) are as follows:

- $b \in \mathbb{R}^n$,
- A is a non-negative definite, symmetric real-valued $n \times n$ matrix,
- The *Lévy measure* μ is a Borel (σ finite) measure on \mathbb{R}^n for which,

$$u(\{0\})=0$$
 , $\int_{\mathbb{R}^n}(1\wedge |u|^2)\nu(du)<\infty.$

Many important examples include Gaussian measure, Poisson measure, stable laws, *t*-distribution, χ^2 -distribution, relativistic distribution, Riemann-zeta distribution etc. etc.

If μ is O(n)-invariant, i.e. for all $O \in O(n)$, $A \in \mathcal{B}(\mathbb{R}^n)$,

 $\mu(OA) = \mu(A),$

If μ is O(n)-invariant, i.e. for all $O \in O(n)$, $A \in \mathcal{B}(\mathbb{R}^n)$,

 $\mu(OA) = \mu(A),$

$$\eta(\mathbf{y}) = -\frac{1}{2}\mathbf{a}|\mathbf{u}|^2 + \int_{\mathbb{R}^n} (1 - \cos(\mathbf{u} \cdot \mathbf{y}))\nu(d\mathbf{y}),$$

If μ is O(n)-invariant, i.e. for all $O \in O(n)$, $A \in \mathcal{B}(\mathbb{R}^n)$,

 $\mu(OA) = \mu(A),$

$$\eta(\mathbf{y}) = -\frac{1}{2}a|\mathbf{u}|^2 + \int_{\mathbb{R}^n} (1 - \cos(\mathbf{u} \cdot \mathbf{y}))\nu(d\mathbf{y})$$

so μ has characteristics $(0, al, \nu)$, where $a \ge 0$ and ν is an O(n)-invariant Lévy measure.

The LK formula extends, mutatis mutandis, after some work to

• Locally Compact Hausdorff Abelian Groups G, Here $\hat{\mu}: \widehat{G} \to \mathbb{C}$ is given by $\hat{\mu}(\chi) = \int_{G} \chi(g^{-1}) \mu(dg)$, The LK formula extends, mutatis mutandis, after some work to

- Locally Compact Hausdorff Abelian Groups G, Here $\hat{\mu}: \hat{G} \to \mathbb{C}$ is given by $\hat{\mu}(\chi) = \int_{G} \chi(g^{-1}) \mu(dg)$,
- Real Banach spaces E,

Here $\widehat{\mu} : E^* \to \mathbb{C}$ is given by $\widehat{\mu}(y) = \int_E e^{-i\langle y, x \rangle} \mu(dx)$

The LK formula extends, mutatis mutandis, after some work to

- Locally Compact Hausdorff Abelian Groups G, Here $\hat{\mu} : \widehat{G} \to \mathbb{C}$ is given by $\hat{\mu}(\chi) = \int_{G} \chi(g^{-1}) \mu(dg)$,
- Real Banach spaces E,

Here
$$\widehat{\mu}: E^* o \mathbb{C}$$
 is given by $\widehat{\mu}(m{y}) = \int_{E} e^{-i \langle m{y}, m{x}
angle} \mu(dm{x})$

Question: How can we extend this to non-abelian groups and to manifolds?

A (globally) symmetric space is a Riemannian manifold M such that each $p \in M$ is the fixed point of an involutive isometry s_p .

A (globally) *symmetric space* is a Riemannian manifold *M* such that each $p \in M$ is the fixed point of an involutive isometry s_p . In fact, s_p is (locally) a geodesic symmetry.

A D b 4 A b

A (globally) *symmetric space* is a Riemannian manifold M such that each $p \in M$ is the fixed point of an involutive isometry s_p . In fact, s_p is (locally) a geodesic symmetry. Every symmetric space M is a homogeneous space: M = G/K, where G is a Lie group, and K is a compact subgroup. A (globally) *symmetric space* is a Riemannian manifold M such that each $p \in M$ is the fixed point of an involutive isometry s_p . In fact, s_p is (locally) a geodesic symmetry. Every symmetric space M is a homogeneous space: M = G/K, where G is a Lie group, and K is a compact subgroup. In fact, G is the group of all isometries of M and K is the subgroup that leaves some point fixed.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A (globally) symmetric space is a Riemannian manifold M such that each $p \in M$ is the fixed point of an involutive isometry s_p .

In fact, s_p is (locally) a geodesic symmetry.

Every symmetric space *M* is a homogeneous space: M = G/K, where *G* is a Lie group, and *K* is a compact subgroup.

In fact, G is the group of all isometries of M and K is the subgroup that leaves some point fixed.

The canonical surjection $\pi : G \to G/K$ maps g to the left coset gK which is a point $p \in M$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples include

- The *n* sphere $S^n = SO(n+1)/SO(n)$,
- Hyperbolic space $H^n = SO_0(n, 1)/SO(n)$,
- Euclidean space $\mathbb{R}^n = M(n)/O(n)$, where the motion group $M(n) = \mathbb{R}^n \rtimes O(n)$,
- Real projective space $\mathbb{R}P(n) = SO(n+1)/O(n)$,
- Positive definite matrices $\mathcal{P}(n) = GL(n, \mathbb{R})/O(n)$.

Qn. How do we carry out harmonic analysis on M?

Qn. How do we carry out harmonic analysis on *M*? A *spherical function* on *G* is a mapping $\Phi \in C^{\infty}(G, \mathbb{C})$ for which:

- $\Phi(kgk') = \Phi(g)$ for all $g \in G, k, k' \in K$,
- Φ is an eigenfunction of all $D \in \mathcal{D}_{K}(G)$, the algebra of differential operators on G, that are left-invariant under G and right-invariant under K.

Qn. How do we carry out harmonic analysis on *M*? A *spherical function* on *G* is a mapping $\Phi \in C^{\infty}(G, \mathbb{C})$ for which:

- $\Phi(kgk') = \Phi(g)$ for all $g \in G, k, k' \in K$,
- Φ is an eigenfunction of all $D \in \mathcal{D}_{K}(G)$, the algebra of differential operators on G, that are left-invariant under G and right-invariant under K.

Equivalently Φ is spherical if it is a non-trivial complex-valued continuous function on *G* for which

$$\int_{\mathcal{K}} \Phi(g k g') dk = \Phi(g) \Phi(g'),$$

for all $g, g' \in G$.

Equivalently Φ is spherical if it is a non-trivial complex-valued continuous function on *G* for which

$$\int_{\mathcal{K}} \Phi(gkg') dk = \Phi(g) \Phi(g'),$$

for all $g, g' \in G$.

Here dk = m(dk) is normalised Haar measure on K so that m(K) = 1and for all $k, k' \in K, A \in \mathcal{B}(K)$,

$$m(kA) = m(Ak') = m(A).$$

We say that $\tilde{\Phi}$ is a *spherical function* on *M* if $\tilde{\Phi} \circ \pi$ is a spherical function on *G*.

- Examples
 - The two sphere S², Φ_m(θ) = P_m(cos(θ)) are zonal spherical harmonics, where θ ∈ [0, π) is the colatitude, and P_m is the Legendre polynomial of degree m ∈ N.

We say that $\tilde{\Phi}$ is a *spherical function* on *M* if $\tilde{\Phi} \circ \pi$ is a spherical function on *G*.

Examples

- The two sphere S², Φ_m(θ) = P_m(cos(θ)) are zonal spherical harmonics, where θ ∈ [0, π) is the colatitude, and P_m is the Legendre polynomial of degree m ∈ N.
- Hyperbolic space H¹, Φ_m(θ) = P_m(cosh(θ)), where θ is the geodesic distance of a point from the "origin" K(0 ≤ θ < ∞).

In many examples, spherical functions can be expressed in terms of hypergeometric functions.

イロト イ押ト イヨト イヨト
A Borel probability measure μ on *G* is *spherical* if for all $A \in \mathcal{B}(G), k, k' \in K$,

 $\mu(\mathbf{k}\mathbf{A}\mathbf{k}')=\mu(\mathbf{A}).$

• • • • • • • • • • • • •

A Borel probability measure μ on *G* is *spherical* if for all $A \in \mathcal{B}(G), k, k' \in K$,

 $\mu(\mathbf{k}\mathbf{A}\mathbf{k}')=\mu(\mathbf{A}).$

The space of all spherical probability measures on *G* is denoted $\mathcal{M}_{\mathcal{K}}(G)$.

• • • • • • • • • • • •

A Borel probability measure μ on *G* is *spherical* if for all $A \in \mathcal{B}(G), k, k' \in K$,

 $\mu(\mathbf{k}\mathbf{A}\mathbf{k}')=\mu(\mathbf{A}).$

The space of all spherical probability measures on *G* is denoted $\mathcal{M}_{\mathcal{K}}(G)$. The *spherical transform* of $\mu \in \mathcal{M}_{\mathcal{K}}(G)$ is

$$\widehat{\mu}(\Phi) = \int_{G} \Phi(g^{-1}) \mu(dg),$$

where Φ is a spherical function.

A Borel probability measure μ on *G* is *spherical* if for all $A \in \mathcal{B}(G), k, k' \in K$,

 $\mu(\mathbf{k}\mathbf{A}\mathbf{k}')=\mu(\mathbf{A}).$

The space of all spherical probability measures on G is denoted $\mathcal{M}_{\mathcal{K}}(G)$.

The *spherical transform* of $\mu \in \mathcal{M}_{\mathcal{K}}(G)$ is

$$\widehat{\mu}(\Phi) = \int_{G} \Phi(g^{-1}) \mu(dg),$$

where Φ is a spherical function.

The space of all bounded spherical functions may be equipped with a locally compact topology, as it is the spectrum of the commutative Banach algebra (under convolution) $L^1(K \setminus G/K)$.

A Borel probability measure μ on *G* is *spherical* if for all $A \in \mathcal{B}(G), k, k' \in K$,

 $\mu(\mathbf{k}\mathbf{A}\mathbf{k}')=\mu(\mathbf{A}).$

The space of all spherical probability measures on G is denoted $\mathcal{M}_{\mathcal{K}}(G)$.

The *spherical transform* of $\mu \in \mathcal{M}_{\mathcal{K}}(G)$ is

$$\widehat{\mu}(\Phi) = \int_{G} \Phi(g^{-1}) \mu(dg),$$

where Φ is a spherical function.

The space of all bounded spherical functions may be equipped with a locally compact topology, as it is the spectrum of the commutative Banach algebra (under convolution) $L^1(K \setminus G/K)$.

For specific types of group G, there is a convenient parameterisation.

From now on, let *G* be a *noncompact* Lie group (connected, semi-simple, finite centre) (e.g. $G = SL(2, \mathbb{R}), K = SO(2), M = H^1$).

We have the *Iwasawa decomposition*:

G is diffeomorphic to the direct product KAN,

where *A* is abelian and *N* is nilpotent.

Let $\mathfrak{g} = T_e(G)$ be the *Lie algebra* of *G*. It is a linear, infinitesimal approximation to *G* and so contains important information about it.

Let $\mathfrak{g} = T_e(G)$ be the *Lie algebra* of *G*. It is a linear, infinitesimal approximation to *G* and so contains important information about it. The *exponential map* $\exp \mathfrak{g} \to G$. It is a diffeomorphism from a neighbourhood of 0 in \mathfrak{g} to a neighbourhood of *e* in *G*.

Let $\mathfrak{g} = T_e(G)$ be the *Lie algebra* of *G*. It is a linear, infinitesimal approximation to *G* and so contains important information about it. The *exponential map* $\exp \mathfrak{g} \to G$. It is a diffeomorphism from a neighbourhood of 0 in \mathfrak{g} to a neighbourhood of *e* in *G*. e.g. $G = SO(n), \mathfrak{g}$ is space of $n \times n$ skew-symmetric matrices, and exp is usual matrix exponential.

Let $\mathfrak{g} = T_e(G)$ be the *Lie algebra* of *G*. It is a linear, infinitesimal approximation to *G* and so contains important information about it. The *exponential map* $\exp \mathfrak{g} \to G$. It is a diffeomorphism from a neighbourhood of 0 in \mathfrak{g} to a neighbourhood of *e* in *G*. e.g. $G = SO(n), \mathfrak{g}$ is space of $n \times n$ skew-symmetric matrices, and exp is usual matrix exponential.

At Lie algebra level, Iwasawa decomposition is:

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n},$

Let $\mathfrak{g} = T_e(G)$ be the *Lie algebra* of *G*. It is a linear, infinitesimal approximation to *G* and so contains important information about it. The *exponential map* $\exp \mathfrak{g} \to G$. It is a diffeomorphism from a neighbourhood of 0 in \mathfrak{g} to a neighbourhood of *e* in *G*. e.g. $G = SO(n), \mathfrak{g}$ is space of $n \times n$ skew-symmetric matrices, and exp is usual matrix exponential.

At Lie algebra level, Iwasawa decomposition is:

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n},$$

where $\mathfrak{k}, \mathfrak{a}, \mathfrak{n}$ are Lie algebras of K, A, N (resp.) and at the global level, for $g \in G$,

$$g = u(g) \exp{(A(g))n(g)},$$

where $u(g) \in K$, $A(g) \in \mathfrak{a}$, $n(g) \in \mathfrak{n}$.

The following is due to Harish-Chandra:

Theorem

Every spherical function on G is of the following form:

$$\Phi_\lambda(g) = \int_{\mathcal{K}} e^{(i\lambda+
ho)(\mathcal{A}(kg))} dk,$$

where $g \in G$ and the parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$.

Note that $\rho \in \mathfrak{a}^*$ is the famous half-sum of positive roots.

The following is due to Harish-Chandra:

Theorem

Every spherical function on G is of the following form:

$$\Phi_\lambda(g) = \int_{\mathcal{K}} e^{(i\lambda+
ho)(\mathcal{A}(kg))} dk,$$

where $g \in G$ and the parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$.

Note that $\rho \in \mathfrak{a}^*$ is the famous half-sum of positive roots. In this context we can write the spherical transform:

$$\widehat{\mu}(\Phi_{\lambda}) = \widehat{\mu}(\lambda).$$

This is due to Gangolli (Acta. Math. (1964))

Theorem

 $\mu \in \mathcal{M}_{\mathcal{K}}(\mathcal{G})$ is infinitely divisible if and only if for all $\lambda \in \mathfrak{a}^*$,

$$\widehat{\mu}(\lambda) = \exp\left\{-\frac{1}{2}a au_{\lambda} - \int_{G}(1-\Phi_{\lambda}(g))\nu(dg)
ight\},$$

This is due to Gangolli (Acta. Math. (1964))

Theorem

 $\mu \in \mathcal{M}_{\mathcal{K}}(G)$ is infinitely divisible if and only if for all $\lambda \in \mathfrak{a}^*$,

$$\widehat{\mu}(\lambda) = \exp\left\{-\frac{1}{2}a au_{\lambda} - \int_{G}(1-\Phi_{\lambda}(g))\nu(dg)
ight\},$$

where ν is a bi-invariant Lévy measure, $a \ge 0$ and $-\tau_{\lambda}$ is the eigenvalue of the Laplace-Beltrami operator with eigenvector Φ_{λ} .

c.f.
$$G = \mathbb{R}, -\frac{d^2}{dx^2}e^{ixy} = y^2e^{ixy}$$
.

This is due to Gangolli (Acta. Math. (1964))

Theorem

 $\mu \in \mathcal{M}_{\mathcal{K}}(G)$ is infinitely divisible if and only if for all $\lambda \in \mathfrak{a}^*$,

$$\widehat{\mu}(\lambda) = \exp\left\{-\frac{1}{2}a\tau_{\lambda} - \int_{G}(1-\Phi_{\lambda}(g))\nu(dg)
ight\},$$

where ν is a bi-invariant Lévy measure, $a \ge 0$ and $-\tau_{\lambda}$ is the eigenvalue of the Laplace-Beltrami operator with eigenvector Φ_{λ} .

c.f.
$$G = \mathbb{R}, -\frac{d^2}{dx^2}e^{ixy} = y^2e^{ixy}$$
.

Problem: How to go beyond *K*-bi-invariance to arbitrary probability measures on *G* and G/K?

Beyond Spherical Functions I: Background Representation Theory

Let π be a *unitary representation* of a Lie group *H* in some complex Hilbert space V_{π} .

Let π be a *unitary representation* of a Lie group *H* in some complex Hilbert space V_{π} .

Then for all $g \in H, \pi(g)$ is a unitary operator on V_{π} such that

•
$$\pi(gh) = \pi(g)\pi(h)$$
, for all $g, h \in H$,

• The map $g o \pi(g)\psi$ is continuous for all $\psi \in V_{\pi}$,

•
$$\pi(g^{-1})=\pi(g)^{-1}=\pi(g)^*,$$
 for all $g\in H,$

π(e) = I.

- **→ → →**

Let π be a *unitary representation* of a Lie group *H* in some complex Hilbert space V_{π} .

Then for all $g \in H, \pi(g)$ is a unitary operator on V_{π} such that

•
$$\pi(gh) = \pi(g)\pi(h)$$
, for all $g, h \in H$,

• The map $g o \pi(g)\psi$ is continuous for all $\psi \in V_{\pi}$,

•
$$\pi(g^{-1})=\pi(g)^{-1}=\pi(g)^*,$$
 for all $g\in H,$

π(e) = I.

- **→ → →**

★ ∃ ► 4

If π is irreducible so is the *conjugate representation* $\overline{\pi}$ on V_{π}^* defined by $\overline{\pi}(g) = J\pi(g)J^{-1}$ for all $g \in H$, where *J* is conjugate isomorphism between V_{π} and V_{π}^* .

If π is irreducible so is the *conjugate representation* $\overline{\pi}$ on V_{π}^* defined by $\overline{\pi}(g) = J\pi(g)J^{-1}$ for all $g \in H$, where *J* is conjugate isomorphism between V_{π} and V_{π}^* .

Every group *H* has a *trivial* (irreducible) representation π_0 acting on \mathbb{C} , by $\pi_0(g) = 1$ for all $g \in H$.

If π is irreducible so is the *conjugate representation* $\overline{\pi}$ on V_{π}^* defined by $\overline{\pi}(g) = J\pi(g)J^{-1}$ for all $g \in H$, where *J* is conjugate isomorphism between V_{π} and V_{π}^* .

Every group *H* has a *trivial* (irreducible) representation π_0 acting on \mathbb{C} , by $\pi_0(g) = 1$ for all $g \in H$.

The *unitary dual* \hat{H} of *H* is the set of all (equivalence classes modulo unitary equivalence) of irreducible representations.

イロト イ押ト イヨト イヨト

Assume that *H* is compact, then

• For all irreducible representations π of H

$$d_{\pi}:=\dim(V_{\pi})<\infty,$$

so each $\pi(g)$ is a unitary matrix.

Assume that *H* is compact, then

• For all irreducible representations π of H

$$d_{\pi}:=\dim(V_{\pi})<\infty,$$

so each $\pi(g)$ is a unitary matrix.

• \hat{H} is countable.

Assume that H is compact, then

• For all irreducible representations π of H

$$d_{\pi}:=\dim(V_{\pi})<\infty,$$

so each $\pi(g)$ is a unitary matrix.

• \hat{H} is countable.

Theorem (Peter-Weyl)

$$L^2(H) = \bigoplus_{\pi \in \widehat{H}} \mathcal{M}_{\pi},$$

where $\mathcal{M}_{\pi} :=$ lin. span{ $f_{u,v}^{\pi}$; $u, v \in V_{\pi}$ } and for all $g \in H$,

$$f^{\pi}_{u,v}(g) := \sqrt{d_{\pi}} \langle \pi(g)u, v \rangle.$$

Define $\gamma_\pi:V_\pi\otimes V_\pi^* o \mathcal{M}_\pi$ by $\gamma_\pi(u\otimes v^*)=f_{u,v}^\pi,$

for all $u \in V_{\pi}, v^* \in V_{\pi}^*$.

Then γ_{π} extends to a unitary isomorphism.

• • • • • • • • • • • •

Beyond Spherical Functions II: First Attempt at Generalisation

Return to non-compact G with compact subgroup K. Recall Harish-Chandra's formula for spherical functions:

$$\Phi_\lambda(g) = \int_{\mathcal{K}} e^{(i\lambda+
ho)(\mathcal{A}(kg))} dk.$$

→ ∃ →

Beyond Spherical Functions II: First Attempt at Generalisation

Return to non-compact G with compact subgroup K. Recall Harish-Chandra's formula for spherical functions:

$$\Phi_{\lambda}(g) = \int_{\mathcal{K}} e^{(i\lambda+
ho)(\mathcal{A}(kg))} dk.$$

In the harmonic analysis literature we meet *generalised spherical functions* or *Eisenstein integrals*:

$$\Phi_{\lambda,\pi}(g) = \int_{\mathcal{K}} e^{(i\lambda+
ho)(\mathcal{A}(kg))} \pi(k) dk,$$

May 2015

23/33

where $\pi \in \widehat{K}$.

These are NOT the right tools for studying infinite divisibility.

Beyond Spherical Functions III: Second Attempt at Generalisation

What does work, are the generalised Eisenstein integrals:

$$\Phi_{\lambda,\pi_1,\pi_2}(g) = \sqrt{d_{\pi_1}d_{\pi_2}} \int_{K} e^{(i\lambda+\rho)(A(kg))} \pi_1(u(kg)) \otimes \overline{\pi_2}(k) dk,$$

where $\pi_1, \pi_2 \in \widehat{K}$.

∃ >

Beyond Spherical Functions III: Second Attempt at Generalisation

What does work, are the generalised Eisenstein integrals:

$$\Phi_{\lambda,\pi_1,\pi_2}(g) = \sqrt{d_{\pi_1}d_{\pi_2}} \int_{\mathcal{K}} e^{(i\lambda+\rho)(\mathcal{A}(kg))} \pi_1(u(kg)) \otimes \overline{\pi_2}(k) dk,$$

where $\pi_1, \pi_2 \in \widehat{K}$. It is helpful to consider this as an *infinite matrix* by ordering irreducibles $\pi_0, \pi_1, \pi_2, \ldots$ and writing

$$\Phi_{\lambda}(g) = (\Phi_{\lambda,\pi_i,\pi_j}(g)),$$

Beyond Spherical Functions III: Second Attempt at Generalisation

What does work, are the generalised Eisenstein integrals:

$$\Phi_{\lambda,\pi_1,\pi_2}(g) = \sqrt{d_{\pi_1}d_{\pi_2}} \int_{\mathcal{K}} e^{(i\lambda+\rho)(\mathcal{A}(kg))} \pi_1(u(kg)) \otimes \overline{\pi_2}(k) dk,$$

where $\pi_1, \pi_2 \in \widehat{K}$. It is helpful to consider this as an *infinite matrix* by ordering irreducibles $\pi_0, \pi_1, \pi_2, \ldots$ and writing

$$\Phi_{\lambda}(g) = (\Phi_{\lambda,\pi_i,\pi_j}(g)),$$

May 2015

24/33

so the (π_0, π_0) – entry is the Harish-Chandra spherical function, and the top row is the Eisenstein integral.

These are related to *principal series* of representations of *G* obtained using *Mackey's theory of induced representations*. So ξ_{λ} is a representation of *G* on $L^2(K)$ where for $g \in G, f \in L^2(K), l \in K$:

$$(\xi_{\lambda}(g)f)(l) = e^{(i\lambda+\rho)(A(lg))}f(u(lg)).$$

The representation is unitary if $\lambda \in \mathfrak{a}^*$.

These are related to *principal series* of representations of *G* obtained using *Mackey's theory of induced representations*. So ξ_{λ} is a representation of *G* on $L^{2}(K)$ where for $g \in G, f \in L^{2}(K), l \in K$:

$$(\xi_{\lambda}(g)f)(l) = e^{(i\lambda+\rho)(A(lg))}f(u(lg)).$$

The representation is unitary if $\lambda \in \mathfrak{a}^*$. The connection is given by the following:

Theorem

For each
$$\lambda \in \mathfrak{a}^*, \pi_1, \pi_2 \in \widehat{K}, g \in G, u_1, v_1 \in V_{\pi_1}, u_2, v_2 \in V_{\pi_2}$$
,

$$egin{aligned} &\langle \Phi_{\lambda,\pi_1,\pi_2}(\boldsymbol{g})(\boldsymbol{u}_1\otimes \boldsymbol{u}_2^*), \boldsymbol{v}_1\otimes \boldsymbol{v}_2^*
angle_{\mathcal{V}_{\pi_1}\otimes \mathcal{V}_{\pi_2}}\ &= &\langle \xi_\lambda(\boldsymbol{g})\gamma_{\pi_1}(\boldsymbol{u}_1\otimes \boldsymbol{v}_1^*), \gamma_{\pi_2}(\boldsymbol{u}_2\otimes \boldsymbol{v}_2^*)
angle_{L^2(K)}. \end{aligned}$$

∃ ► < ∃</p>

Proof.

$$\begin{split} &\langle \xi_{\lambda}(g)\gamma_{\pi_{1}}(u_{1}\otimes v_{1}^{*}),\gamma_{\pi_{2}}(u_{2}\otimes v_{2}^{*})\rangle_{L^{2}(K)} \\ &= \langle \xi_{\lambda}(g)f_{u_{1},v_{1}}^{\pi_{1}},f_{u_{2},v_{2}}^{\pi_{2}}\rangle_{L^{2}(K)} \\ &= \int_{K} e^{(i\lambda+\rho)(A(kg))}f_{u_{1},v_{1}}^{\pi_{1}}(u(kg))\overline{f_{u_{2},v_{2}}^{\pi_{2}}(k)}dk \\ &= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\int_{K} e^{(i\lambda+\rho)(A(kg))}\langle \pi_{1}(u(kg))u_{1},v_{1}\rangle\overline{\langle \pi_{2}(k)u_{2},v_{2}\rangle}dk \\ &= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\int_{K} e^{(i\lambda+\rho)(A(kg))}\langle \pi_{1}(u(kg))u_{1},v_{1}\rangle\overline{\langle \pi_{2}(k)u_{2}^{*}},v_{2}^{*}\rangle dk \\ &= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\int_{K} e^{(i\lambda+\rho)(A(kg))}\langle (\pi_{1}(u(kg))\otimes \overline{\pi_{2}}(k))u_{1}\otimes u_{2}^{*},v_{1}\otimes v_{2}^{*}\rangle dk \\ &= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\int_{K} e^{(i\lambda+\rho)(A(kg))}\langle (\pi_{1}(u(kg))\otimes \overline{\pi_{2}}(k))u_{1}\otimes u_{2}^{*},v_{1}\otimes v_{2}^{*}\rangle dk \\ &= \langle \Phi_{\lambda,\pi_{1},\pi_{2}}(g)(u_{1}\otimes u_{2}^{*}),v_{1}\otimes v_{2}^{*}\rangle v_{\pi_{1}}\otimes v_{\pi_{2}}^{*} \Box \end{split}$$

<ロ> <問> <問> < 同> < 同> 、

The next result demonstrates that the group composition rule manifests as matrix multiplication of generalised Eisenstein integrals:

Theorem

For all
$$\lambda \in \mathfrak{a}^*, \pi_1, \pi_2 \in \widehat{K}, g, h \in G, 1 \leq i, k \leq d_{\pi_1}, 1 \leq j, l \leq d_{\pi_2},$$

$$\Phi_{\lambda,\pi_1,\pi_2}^{(i,j),(k,l)}(gh) = \sum_{\eta \in \widehat{K}} \sum_{p,q=1}^{d_{\eta}} \Phi_{\lambda,\pi_1,\eta}^{(i,p),(k,q)}(h) \Phi_{\lambda,\eta,\pi_2}^{(p,j),(q,l)}(g)$$
(1.1)

Proof.

$$\Phi_{\lambda,\pi_{1},\pi_{2}}^{(i,j),(k,l)}(gh) = \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\langle\xi(gh)(\langle\pi_{1}(\cdot)e_{\pi_{1}}^{i},e_{\pi_{1}}^{k}\rangle),\langle\pi_{2}(\cdot)e_{\pi_{2}}^{j},e_{\pi_{2}}^{l}\rangle\rangle_{L^{2}(K)}$$

$$= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\langle\xi(h)(\langle\pi_{1}(\cdot)e_{\pi_{1}}^{i},e_{\pi_{1}}^{k}\rangle),\xi(g^{-1})(\langle\pi_{2}(\cdot)e_{\pi_{2}}^{j},e_{\pi_{2}}^{l}\rangle)\rangle_{L^{2}(K)}$$

$$= \sqrt{d_{\pi_{1}}d_{\pi_{2}}}\sum_{\eta\in\widehat{K}}d_{\eta}\sum_{p,q=1}^{d_{\eta}}\langle\xi(h)(\langle\pi_{1}(\cdot)e_{\pi_{1}}^{i},e_{\pi_{1}}^{k}\rangle),\langle\eta(\cdot)e_{\eta}^{p},e_{\eta}^{q}\rangle\rangle_{L^{2}(K)}$$

$$\times \langle\xi(g)(\langle\eta(\cdot)e_{\eta}^{p},e_{\eta}^{q}\rangle),\langle\pi_{2}(\cdot)e_{\pi_{2}}^{j},e_{\pi_{2}}^{l}\rangle\rangle_{L^{2}(K)}$$
and the result follows.

Dave Applebaum (Sheffield UK)

27/33
We can write (1.1) succinctly as

$$\Phi_{\lambda,\pi_1,\pi_2}(gh) = \sum_{\eta \in \widehat{K}} \Phi_{\lambda,\pi_1,\eta}(h) \Phi_{\lambda,\eta,\pi_2}(g)$$
(1.2)

Let $\mu \in \mathcal{M}(G)$. Define its *Eisenstein transform* to be the matrix valued integral defined for each $\pi_1, \pi_2 \in \widehat{K}$ by:

$$\widehat{\mu}_{\lambda,\pi_1,\pi_2} := \int_G \Phi_{\lambda,\pi_1,\pi_2}(g^{-1})\mu(dg)$$
 (1.3)

for all $\lambda \in \mathfrak{a}^*$.

Let $\mu \in \mathcal{M}(G)$. Define its *Eisenstein transform* to be the matrix valued integral defined for each $\pi_1, \pi_2 \in \widehat{K}$ by:

$$\widehat{\mu}_{\lambda,\pi_1,\pi_2} := \int_{G} \Phi_{\lambda,\pi_1,\pi_2}(g^{-1})\mu(dg)$$
 (1.3)

for all $\lambda \in \mathfrak{a}^*$.

This interacts perfectly with convolution of measures to give (in the sense of multiplication of infinite matrices):

$$(\widehat{\mu^{(1)}*\mu^{(2)}})_{\lambda}=\widehat{\mu^{(1)}_{\lambda}}\widehat{\mu^{(2)}_{\lambda}}.$$

The Lévy-Khintchine Formula

Theorem

If $\mu \in \mathcal{M}(G)$ is infinitely divisible (without idempotent factors) then (in the sense of infinite matrices) for all $\lambda \in \mathfrak{a}^*$,

 $\widehat{\mu}_{\lambda} = Exp(\psi_{\lambda}),$

The Lévy-Khintchine Formula

Theorem

If $\mu \in \mathcal{M}(G)$ is infinitely divisible (without idempotent factors) then (in the sense of infinite matrices) for all $\lambda \in \mathfrak{a}^*$,

 $\widehat{\mu}_{\lambda} = Exp(\psi_{\lambda}),$

where
$$\psi_{\lambda} = -b^{i}\rho_{\lambda}(X_{i}) + a^{ij}\rho_{\lambda}(X_{i})\rho_{\lambda}(X_{j}) + \eta_{\lambda}$$
.

Theorem

If $\mu \in \mathcal{M}(G)$ is infinitely divisible (without idempotent factors) then (in the sense of infinite matrices) for all $\lambda \in \mathfrak{a}^*$,

 $\widehat{\mu}_{\lambda} = Exp(\psi_{\lambda}),$

where
$$\psi_{\lambda} = -b^{i}\rho_{\lambda}(X_{i}) + a^{ij}\rho_{\lambda}(X_{i})\rho_{\lambda}(X_{j}) + \eta_{\lambda}$$
.

Here η_{λ} is the matrix whose diagonal entries are

$$\int_{G} (\Phi_{\lambda,\pi,\pi}(\tau^{-1}) - 1 + x^{i}(\tau)\rho_{\lambda,\pi,\pi}(X_{i}))\nu(d\tau)$$

and off-diagonal entries are

$$\int_{G} (\Phi_{\lambda,\pi_1,\pi_2}(\tau^{-1}) + x^i(\tau)\rho_{\lambda,\pi_1,\pi_2}(X_i))\nu(d\tau).$$

Here

- $\{X_1, X_2, \ldots, X_n\}$ is a basis for \mathfrak{g} ,
- b ∈ ℝⁿ, a = (a_{ij}) is a non-negative definite, symmetric n × n matrix, and ν is a Lévy measure on G,
- *x*₁,..., *x_n* are smooth functions on *G* which are canonical co-ordinates in a neighbourhood of *e*,
- For $X \in \mathfrak{g}, \rho_{\lambda, \pi_1, \pi_2}(X) := \left. \frac{d}{dt} \Phi_{\lambda, \pi_1, \pi_2}(\exp(tX)) \right|_{t=0}$.

・ロト ・ 同ト ・ ヨト ・ ヨ

We then obtain a C_0 semigroup on $C_0(G)$ by the prescription:

$$T_t f(\sigma) = \int_G f(\sigma \tau) \rho_t(\mathbf{d} \tau).$$

We then obtain a C_0 semigroup on $C_0(G)$ by the prescription:

$$T_t f(\sigma) = \int_G f(\sigma \tau) \rho_t(d\tau).$$

The generators \mathcal{L} of such semigroups were characterised by Hunt (1956). He showed that on a suitable domain of "twice-differentiable" functions

$$\mathcal{L}f(g)=b^iX_if(g)+a^{ij}X_iX_jf(g)+\int_G(f(gh)-f(g)-x^i(h)X_if(g))
u(dh).$$

We then obtain a C_0 semigroup on $C_0(G)$ by the prescription:

$$T_t f(\sigma) = \int_G f(\sigma \tau) \rho_t(d\tau).$$

The generators \mathcal{L} of such semigroups were characterised by Hunt (1956). He showed that on a suitable domain of "twice-differentiable" functions

$$\mathcal{L}f(g)=b^iX_if(g)+a^{ij}X_iX_jf(g)+\int_G(f(gh)-f(g)-x^i(h)X_if(g))
u(dh).$$

We then compute

 $\widehat{\mu}(\lambda) = \widehat{\rho_1}(\lambda) = T_1 \Phi_{\lambda}.$

Diolch Yn Fawr Am Wrando. Thank You For Listening.

Dave Applebaum (Sheffield UK) Generalised Spherical Functions and Levy-Kh

May 2015 33 / 33