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Outline of Talk

Background on “structural” probability theory, the Lévy-Khintchine
(LK) formula.

Spherical functions on symmetric spaces.

The LK formula for spherically symmetric measures.

Generalised spherical functions and the LK formula for general
measures.
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Invitation to Structural Probability

Let (Ω,F ,P) be a probability space and (E , E) be a measurable space.

A random variable X is a measurable function from (Ω,F) to (E , E).
The law or distribution of X is the probability measure pX on (E , E),
given by pX (A) = P(X−1(A)), for A ∈ E .
In elementary discrete probability we take (E , E) = (S,P(S)), where S
is a finite set.
To study Brownian motion, Lévy processes etc. we take
(E , E) = (Rd ,B(Rd )).
To investigate chance phenomena interacting with interesting
mathematical structures, E might be a Banach space, a group or a
manifold.
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Let G be a locally compact Hausdorff group with identity e. LetM(G)
be the set of all Borel (Radon) probability measures on G.

The
convolution of µ1 and µ2 in G is the unique µ1 ∗ µ2 ∈M(G) such that
for all f ∈ Cc(G):∫

G
f (g)(µ1 ∗ µ2)(dg) =

∫
G

∫
G

f (gh)µ1(dg)µ2(dh).

(M(G), ∗) is a monoid with unit δe (Dirac mass at e).

We say that µ ∈M(G) is infinitely divisible if for each n ∈ N, there
exists µ

1
n ∈M(G) so that

µ = µ
1
n ∗ µ

1
n ∗ · · · ∗ µ

1
n . (n times)

Let G = Rn. Fourier transform: µ̂(y) =
∫
Rn e−ix ·yµ(dx), for all y ∈ Rn.
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The Lévy Khintchine Formula

Theorem
The measure µ ∈M(Rn) is infinitely divisible if and only if for all
y ∈ Rn,

µ̂(y) = exp (−η(y)),

where

η(y) = ib · y +
1
2

Ay · y

+

∫
Rn

(1− e−iu·y − iu · y1B1(y))ν(dy)
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where the characteristics (b,A, ν) are as follows:

b ∈ Rn,
A is a non-negative definite, symmetric real-valued n × n matrix,
The Lévy measure µ is a Borel (σ- finite) measure on Rn for which,

ν({0}) = 0 ,

∫
Rn

(1 ∧ |u|2)ν(du) <∞.

Many important examples include Gaussian measure, Poisson
measure, stable laws, t-distribution, χ2-distribution, relativistic
distribution, Riemann-zeta distribution etc. etc.
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If µ is O(n)-invariant, i.e. for all O ∈ O(n),A ∈ B(Rn),

µ(OA) = µ(A),

η(y) = −1
2

a|u|2 +

∫
Rn

(1− cos(u · y))ν(dy),

so µ has characteristics (0,aI, ν), where a ≥ 0 and ν is an
O(n)-invariant Lévy measure.
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The LK formula extends, mutatis mutandis, after some work to

Locally Compact Hausdorff Abelian Groups G,

Here µ̂ : Ĝ→ C is given by µ̂(χ) =
∫

G χ(g−1)µ(dg),

Real Banach spaces E ,

Here µ̂ : E∗ → C is given by µ̂(y) =
∫

E e−i〈y ,x〉µ(dx)

Question: How can we extend this to non-abelian groups and to
manifolds?
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Spherical Functions on Symmetric Spaces

A (globally) symmetric space is a Riemannian manifold M such that
each p ∈ M is the fixed point of an involutive isometry sp.

In fact, sp is (locally) a geodesic symmetry.
Every symmetric space M is a homogeneous space: M = G/K , where
G is a Lie group, and K is a compact subgroup.
In fact, G is the group of all isometries of M and K is the subgroup that
leaves some point fixed.
The canonical surjection π : G→ G/K maps g to the left coset gK
which is a point p ∈ M.
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Examples include

The n sphere Sn = SO(n + 1)/SO(n),
Hyperbolic space Hn = SO0(n,1)/SO(n),
Euclidean space Rn = M(n)/O(n), where the motion group
M(n) = Rn o O(n),
Real projective space RP(n) = SO(n + 1)/O(n),
Positive definite matrices P(n) = GL(n,R)/O(n).
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Spherical Functions

Qn. How do we carry out harmonic analysis on M?

A spherical function on G is a mapping Φ ∈ C∞(G,C) for which:

Φ(e) = 1,
Φ(kgk ′) = Φ(g) for all g ∈ G, k , k ′ ∈ K ,
Φ is an eigenfunction of all D ∈ DK (G), the algebra of differential
operators on G, that are left-invariant under G and right-invariant
under K .
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Equivalently Φ is spherical if it is a non-trivial complex-valued
continuous function on G for which∫

K
Φ(gkg′)dk = Φ(g)Φ(g′),

for all g,g′ ∈ G.

Here dk = m(dk) is normalised Haar measure on K so that m(K ) = 1
and for all k , k ′ ∈ K ,A ∈ B(K ),

m(kA) = m(Ak ′) = m(A).
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We say that Φ̃ is a spherical function on M if Φ̃ ◦ π is a spherical
function on G.
Examples

The two sphere S2, Φm(θ) = Pm(cos(θ)) are zonal spherical
harmonics, where θ ∈ [0, π) is the colatitude, and Pm is the
Legendre polynomial of degree m ∈ N.

Hyperbolic space H1, Φm(θ) = Pm(cosh(θ)), where θ is the
geodesic distance of a point from the “origin” K (0 ≤ θ <∞).

In many examples, spherical functions can be expressed in terms of
hypergeometric functions.
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Spherical Measures, Spherical Transform

A Borel probability measure µ on G is spherical if for all
A ∈ B(G), k , k ′ ∈ K ,

µ(kAk ′) = µ(A).

The space of all spherical probability measures on G is denoted
MK (G).
The spherical transform of µ ∈MK (G) is

µ̂(Φ) =

∫
G

Φ(g−1)µ(dg),

where Φ is a spherical function.
The space of all bounded spherical functions may be equipped with a
locally compact topology, as it is the spectrum of the commutative
Banach algebra (under convolution) L1(K\G/K ).
For specific types of group G, there is a convenient parameterisation.
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The Iwasawa Decomposition

From now on, let G be a noncompact Lie group (connected,
semi-simple, finite centre) (e.g. G = SL(2,R),K = SO(2),M = H1).

We have the Iwasawa decomposition:

G is diffeomorphic to the direct product KAN,

where A is abelian and N is nilpotent.
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Let g = Te(G) be the Lie algebra of G. It is a linear, infinitesimal
approximation to G and so contains important information about it.

The exponential map exp g→ G. It is a diffeomorphism from a
neighbourhood of 0 in g to a neighbourhood of e in G.
e.g. G = SO(n), g is space of n × n skew-symmetric matrices, and exp
is usual matrix exponential.
At Lie algebra level, Iwasawa decomposition is:

g = k⊕ a⊕ n,

where k, a, n are Lie algebras of K ,A,N (resp.) and at the global level,
for g ∈ G,

g = u(g) exp (A(g))n(g),

where u(g) ∈ K ,A(g) ∈ a,n(g) ∈ n.
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The following is due to Harish-Chandra:

Theorem
Every spherical function on G is of the following form:

Φλ(g) =

∫
K

e(iλ+ρ)(A(kg))dk ,

where g ∈ G and the parameter λ ∈ a∗C.

Note that ρ ∈ a∗ is the famous half-sum of positive roots.

In this context we can write the spherical transform:

µ̂(Φλ) = µ̂(λ).
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This is due to Gangolli (Acta. Math. (1964))

Theorem
µ ∈MK (G) is infinitely divisible if and only if for all λ ∈ a∗,

µ̂(λ) = exp
{
−1

2
aτλ −

∫
G

(1− Φλ(g))ν(dg)

}
,

where ν is a bi-invariant Lévy measure, a ≥ 0 and −τλ is the
eigenvalue of the Laplace-Beltrami operator with eigenvector Φλ.

c.f. G = R,− d2

dx2 eixy = y2eixy .

Problem: How to go beyond K -bi-invariance to arbitrary probability
measures on G and G/K ?

Dave Applebaum (Sheffield UK) Generalised Spherical Functions and Levy-Khinchine Formula on Groups and Symmetric SpacesMay 2015 18 / 33



This is due to Gangolli (Acta. Math. (1964))

Theorem
µ ∈MK (G) is infinitely divisible if and only if for all λ ∈ a∗,

µ̂(λ) = exp
{
−1

2
aτλ −

∫
G

(1− Φλ(g))ν(dg)

}
,

where ν is a bi-invariant Lévy measure, a ≥ 0 and −τλ is the
eigenvalue of the Laplace-Beltrami operator with eigenvector Φλ.

c.f. G = R,− d2

dx2 eixy = y2eixy .

Problem: How to go beyond K -bi-invariance to arbitrary probability
measures on G and G/K ?

Dave Applebaum (Sheffield UK) Generalised Spherical Functions and Levy-Khinchine Formula on Groups and Symmetric SpacesMay 2015 18 / 33



This is due to Gangolli (Acta. Math. (1964))

Theorem
µ ∈MK (G) is infinitely divisible if and only if for all λ ∈ a∗,

µ̂(λ) = exp
{
−1

2
aτλ −

∫
G

(1− Φλ(g))ν(dg)

}
,

where ν is a bi-invariant Lévy measure, a ≥ 0 and −τλ is the
eigenvalue of the Laplace-Beltrami operator with eigenvector Φλ.

c.f. G = R,− d2

dx2 eixy = y2eixy .

Problem: How to go beyond K -bi-invariance to arbitrary probability
measures on G and G/K ?

Dave Applebaum (Sheffield UK) Generalised Spherical Functions and Levy-Khinchine Formula on Groups and Symmetric SpacesMay 2015 18 / 33



Beyond Spherical Functions I: Background
Representation Theory

Let π be a unitary representation of a Lie group H in some complex
Hilbert space Vπ.

Then for all g ∈ H, π(g) is a unitary operator on Vπ such that

π(gh) = π(g)π(h), for all g,h ∈ H,
The map g → π(g)ψ is continuous for all ψ ∈ Vπ,
π(g−1) = π(g)−1 = π(g)∗, for all g ∈ H,
π(e) = I.
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A closed subspace Wπ of Vπ is invariant for π if π(g)Wπ ⊆Wπ for all
g ∈ H, and π is irreducible if its only invariant subspaces are Vπ and
{0}.

If π is irreducible so is the conjugate representation π on V ∗π defined by
π(g) = Jπ(g)J−1 for all g ∈ H, where J is conjugate isomorphism
between Vπ and V ∗π .

Every group H has a trivial (irreducible) representation π0 acting on C,
by π0(g) = 1 for all g ∈ H.

The unitary dual Ĥ of H is the set of all (equivalence classes modulo
unitary equivalence) of irreducible representations.
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Assume that H is compact, then

For all irreducible representations π of H

dπ := dim(Vπ) <∞,

so each π(g) is a unitary matrix.

Ĥ is countable.

Theorem (Peter-Weyl)

L2(H) =
⊕
π∈Ĥ

Mπ,

whereMπ := lin. span{f πu,v ; u, v ∈ Vπ} and for all g ∈ H,

f πu,v (g) :=
√

dπ〈π(g)u, v〉.
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Define γπ : Vπ ⊗ V ∗π →Mπ by

γπ(u ⊗ v∗) = f πu,v ,

for all u ∈ Vπ, v∗ ∈ V ∗π .

Then γπ extends to a unitary isomorphism.
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Beyond Spherical Functions II: First Attempt at
Generalisation

Return to non-compact G with compact subgroup K . Recall
Harish-Chandra’s formula for spherical functions:

Φλ(g) =

∫
K

e(iλ+ρ)(A(kg))dk .

In the harmonic analysis literature we meet generalised spherical
functions or Eisenstein integrals:

Φλ,π(g) =

∫
K

e(iλ+ρ)(A(kg))π(k)dk ,

where π ∈ K̂ .

These are NOT the right tools for studying infinite divisibility.
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Beyond Spherical Functions III: Second Attempt at
Generalisation

What does work, are the generalised Eisenstein integrals:

Φλ,π1,π2(g) =
√

dπ1dπ2

∫
K

e(iλ+ρ)(A(kg))π1(u(kg))⊗ π2(k)dk ,

where π1, π2 ∈ K̂ .

It is helpful to consider this as an infinite matrix by ordering irreducibles
π0, π1, π2, . . . and writing

Φλ(g) = (Φλ,πi ,πj (g)),

so the (π0, π0)− entry is the Harish-Chandra spherical function,
and the top row is the Eisenstein integral.
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These are related to principal series of representations of G obtained
using Mackey’s theory of induced representations. So ξλ is a
representation of G on L2(K ) where for g ∈ G, f ∈ L2(K ), l ∈ K :

(ξλ(g)f )(l) = e(iλ+ρ)(A(lg))f (u(lg)).

The representation is unitary if λ ∈ a∗.

The connection is given by the following:

Theorem

For each λ ∈ a∗, π1, π2 ∈ K̂ ,g ∈ G,u1, v1 ∈ Vπ1 ,u2, v2 ∈ Vπ2 ,

〈Φλ,π1,π2(g)(u1 ⊗ u∗2), v1 ⊗ v∗2 〉Vπ1⊗V∗
π2

= 〈ξλ(g)γπ1(u1 ⊗ v∗1 ), γπ2(u2 ⊗ v∗2 )〉L2(K ).
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Proof.

〈ξλ(g)γπ1(u1 ⊗ v∗1 ), γπ2(u2 ⊗ v∗2 )〉L2(K )

= 〈ξλ(g)f π1
u1,v1

, f π2
u2,v2
〉L2(K )

=

∫
K

e(iλ+ρ)(A(kg))f π1
u1,v1

(u(kg))f π2
u2,v2

(k)dk

=
√

dπ1dπ2

∫
K

e(iλ+ρ)(A(kg))〈π1(u(kg))u1, v1〉〈π2(k)u2, v2〉dk

=
√

dπ1dπ2

∫
K

e(iλ+ρ)(A(kg))〈π1(u(kg))u1, v1〉〈π2(k)u∗2, v
∗
2 〉dk

=
√

dπ1dπ2

∫
K

e(iλ+ρ)(A(kg))〈(π1(u(kg))⊗ π2(k))u1 ⊗ u∗2, v1 ⊗ v∗2 〉dk

= 〈Φλ,π1,π2(g)(u1 ⊗ u∗2), v1 ⊗ v∗2 〉Vπ1⊗V∗
π2

2
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The next result demonstrates that the group composition rule
manifests as matrix multiplication of generalised Eisenstein integrals:

Theorem

For all λ ∈ a∗, π1, π2 ∈ K̂ ,g,h ∈ G,1 ≤ i , k ≤ dπ1 ,1 ≤ j , l ≤ dπ2 ,

Φ
(i,j),(k ,l)
λ,π1,π2

(gh) =
∑
η∈K̂

dη∑
p,q=1

Φ
(i,p),(k ,q)
λ,π1,η

(h)Φ
(p,j),(q,l)
λ,η,π2

(g) (1.1)

Proof.

Φ
(i,j),(k ,l)
λ,π1,π2

(gh) =
√

dπ1dπ2〈ξ(gh)(〈π1(·)ei
π1
,ek
π1
〉), 〈π2(·)ej

π2
,el
π2
〉〉L2(K )

=
√

dπ1dπ2〈ξ(h)(〈π1(·)ei
π1
,ek
π1
〉), ξ(g−1)(〈π2(·)ej

π2
,el
π2
〉)〉L2(K )

=
√

dπ1dπ2

∑
η∈K̂

dη
dη∑

p,q=1

〈ξ(h)(〈π1(·)ei
π1
,ek
π1
〉), 〈η(·)ep

η ,e
q
η 〉〉L2(K )

× 〈ξ(g)(〈η(·)ep
η ,e

q
η 〉), 〈π2(·)ej

π2
,el
π2
〉〉L2(K )

and the result follows. 2
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We can write (1.1) succinctly as

Φλ,π1,π2(gh) =
∑
η∈K̂

Φλ,π1,η(h)Φλ,η,π2(g) (1.2)
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The Eisenstein Transform

Let µ ∈M(G). Define its Eisenstein transform to be the matrix valued
integral defined for each π1, π2 ∈ K̂ by:

µ̂λ,π1,π2 :=

∫
G

Φλ,π1,π2(g−1)µ(dg) (1.3)

for all λ ∈ a∗.

This interacts perfectly with convolution of measures to give (in the
sense of multiplication of infinite matrices):

( ̂µ(1) ∗ µ(2))λ = µ̂
(1)
λ µ̂

(2)
λ .
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The Lévy-Khintchine Formula

Theorem
If µ ∈M(G) is infinitely divisible (without idempotent factors) then (in
the sense of infinite matrices) for all λ ∈ a∗,

µ̂λ = Exp(ψλ),

where ψλ = −biρλ(Xi) + aijρλ(Xi)ρλ(Xj) + ηλ.

Here ηλ is the matrix whose diagonal entries are∫
G

(Φλ,π,π(τ−1)− 1 + x i(τ)ρλ,π,π(Xi))ν(dτ)

and off-diagonal entries are∫
G

(Φλ,π1,π2(τ−1) + x i(τ)ρλ,π1,π2(Xi))ν(dτ).
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Here
{X1,X2, . . . ,Xn} is a basis for g,
b ∈ Rn,a = (aij) is a non-negative definite, symmetric n × n
matrix, and ν is a Lévy measure on G,
x1, . . . , xn are smooth functions on G which are canonical
co-ordinates in a neighbourhood of e,
For X ∈ g, ρλ,π1,π2(X ) := d

dt Φλ,π1,π2(exp(tX ))
∣∣
t=0.
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The proof works by first applying the Dani-McCrudden embedding
theorem (see Invent.Math. 110 237 (1992)) to realise the infinitely
divisible measure µ as ρ1 in a convolution semigroup of probability
measures (ρt , t ≥ 0).

We then obtain a C0 semigroup on C0(G) by the prescription:

Tt f (σ) =

∫
G

f (στ)ρt (dτ).

The generators L of such semigroups were characterised by Hunt
(1956). He showed that on a suitable domain of “twice-differentiable”
functions

Lf (g) = biXi f (g) + aijXiXj f (g) +

∫
G

(f (gh)− f (g)− x i(h)Xi f (g))ν(dh).

We then compute

µ̂(λ) = ρ̂1(λ) = T1Φλ.
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Diolch Yn Fawr Am Wrando.
Thank You For Listening.
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