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Abstract

We apply Peter-Weyl theory to obtain necessary and sufficient
conditions for a probability measure on a compact group to have a
square-integrable density. Applications are given to measures on the
d-dimensional torus.
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1 Introduction

Given a probability measure on a Riemannian manifold it is highly beneficial
if we can establish that it has a density with respect to the Riemannian
volume measure. This is vital for statistical inference but a density may
also contain important information about the topology and geometry of the
manifold, e.g. the heat kernel is the density of Brownian motion on a manifold
(see e.g. [6], [18].) Much work by stochastic analysts has been focussed
on finding densities for solutions of stochastic differential equations driven
by Brownian motion. A key result here is Hörmander’s theorem [10] which
gives a sufficient condition (called “hypoellipticity”) for existence of a smooth
density involving the Lie algebra generated by the driving vector fields. The
search for equivalent probabilistic conditions for hypoellipticity led to the
Malliavin calculus [17]. Ongoing research is now developing this into a tool
to investigate densities of more sophisticated systems such as solutions of
stochastic differential equations driven by non-Gaussian noise (see e.g. [11])
and solutions of stochastic partial differential equations (see e.g. [19] and
references therein.)

In this short note we focus on the case of a compact group G. Re-
cently Liao (see Chapter 4 in [13] or [14]) has established existence of square-
integrable densities for G-valued Lévy processes (i.e. processes with inde-
pendent and stationary increments) in the case where G is a Lie group and
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the laws are either conjugate invariant or invariant under the inverse map.
His approach makes extensive use of Fourier analysis - especially the Pe-
ter Weyl theorem - and requires the hypoellipticity assumption to hold for
the diffusion part. More recently, working together with L.Wang [15], he
has obtained densities of convolution semigroups of probability measures on
symmetric spaces. The main purpose of this note is to adapt Liao’s ap-
proach to arbitrary probability measures on a compact group. We give four
equivalent necessary and sufficient conditions for such a measure to have a
square-integrable density with respect to Haar measure. These effectively
require summability of squares of matrix elements taken over all irreducible
representations of the associated non-commutative Fourier transform (for
background on which see [12], section 3.2. in [7], [8], [21] or [2].) This can
to some extent be seen as analogous to the well-known result that a prob-
ability measure on Euclidean space has a density if its Fourier transform
(characteristic function) is absolutely integrable (see e.g. Theorem 3.2.2 in
[16].) As an application of our result we are able to show that a large class of
infinitely divisible probability measures on the d-dimensional torus Πd have
an L2-density if they have a non-degenerate Gaussian component. In fact
this condition is equivalent to hypoellipticity and this result, together with
those of Liao which were discussed above leads us to conjecture that hypoel-
lipticity is a sufficient condition for the existence of a density for an arbitrary
infinitely divisible probability measure on a compact Lie group. In the last
part of the paper we give some examples of infinitely divisible measures on
Πd which have no Gaussian component but still have an L2-density.

Notation. If T is a bounded linear operator acting in a complex Hilbert
space H then T ∗ denotes its adjoint. When H is finite-dimensional then T
may be identified with a complex matrix and T ∗ is the complex conjugate of
the transpose of T . If z is a complex number then <(z) and =(z) are its real
and imaginary parts (respectively).

2 Preliminaries

Let G be a locally compact group with neutral element e and let Rep(G)
be the set of all equivalence classes of unitary representations of G in a
complex Hilbert space. Irr(G) is the subset obtained from all irreducible
representations and those that are non-trivial are denoted by Irr+(G). We
will, as usual, identify each equivalence class with a representative element.
If π ∈ Rep(G), then for each g ∈ G, π(g) is a unitary operator in the Hilbert
space Vπ. The σ-algebra of all Borel sets in G is denoted by B(G). Let M(G)
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denote the set of all Borel probability measures on G. It is a monoid with
respect to the binary operation of convolution where the identity element is
the Dirac mass at e. We recall that the convolution µ1 ∗µ2 of µ1, µ2 ∈M(G)
is the unique Borel probability measure for which

∫

G

f(σ)(µ1 ∗ µ2)(dσ) =

∫

G

∫

G

f(στ)µ1(dσ)µ2(dτ),

for all real-valued bounded Borel functions f defined on G. The reversed
measure µ̃ that is associated to each µ ∈M(G) is defined by µ̃(A) = µ(A−1)
for each A ∈ B(G). Note that µ̃ ∈M(G) and that µ̃1 ∗ µ2 = µ̃2 ∗ µ̃1 for each
µ1, µ2 ∈ M(G). µ ∈ M(G) is said to be symmetric if µ̃ = µ. In particular
each of µ̃ ∗ µ and µ ∗ µ̃ are symmetric for arbitrary µ ∈ M(G), but these
measures may be distinct if G is not abelian.

Fix µ ∈ M(G). The non-commutative Fourier transform of µ is defined
as a Bochner integral in the Banach space of bounded linear operators on Vπ

by the prescription

µ̂(π) =

∫

G

π(g)µ(dg),

for each π ∈ Rep(G). It is easy to see that

(F1) µ̂(π) is a contraction on Vπ,

(F2) ̂̃µ(π) = µ̂(π)∗,

(F3) µ̂1 ∗ µ2(π) = µ̂1(π)µ̂2(π), for each µ1, µ2 ∈M(G).

For explicit proofs and further investigations into these ideas see [8], [21],
[2].

3 Densities on Compact Groups

From now on we will take G to be compact. In this case for each π ∈
Irr(G), dπ := dim(Vπ) < ∞. Furthermore any Haar measure defined on
G is finite and bi-invariant. We choose normalised Haar measure and use
the standard notation dg to denote its “differential”. The corresponding L2

space is denoted by L2(G,C). The celebrated Peter-Weyl theorem tells us

that {d
1
2
π πij; 1 ≤ i, j ≤ dπ, π ∈ Irr(G)} is a complete orthonormal basis for
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L2(G,C) where the co-ordinate functions πij are defined by the prescription
πij(g) := π(g)ij, for each 1 ≤ i, j ≤ dπ. Hence if f ∈ L2(G,C),

f = 〈f〉+
∑

π∈Irr+(G)

dπ

dπ∑
i,j=1

〈f, πij〉πij, (3.1)

where 〈f〉 :=
∫

G
f(σ)dσ. Straightforward algebraic manipulation yields the

following alternative representation (see e.g. [4]):

f = 〈f〉+
∑

π∈Irr+(G)

dπtr(f̂(π)π), (3.2)

where f̂(π) :=
∫

G
f(g)π(g−1)dg.

We say that µ ∈ M(G) has a square-integrable density if µ is absolutely
continuous with respect to Haar measure and the Radon-Nikodým derivative
dµ
dg

lies in the space L2(G,R). If this is the case, we observe that if we write

f := dµ
dg

, then

f̂(π) =

∫

G

π(g−1)µ(dg) =

∫

G

π(g)µ̃(dg) = ̂̃µ(π).

An easy consequence of (3.1) and Parseval’s identity is that

||f ||2 = 1 +
∑

π∈Irr+(G)

dπ

dπ∑
i,j=1

|µ̂(π)ij|2. (3.3)

The main result of this paper is the following:

Theorem 3.1 µ ∈ M(G) has a square-integrable density if and only if any
one of the following equivalent conditions is satisfied.

(i)
∑

π∈Irr+(G)
dπ

∑dπ

i,j=1 |µ̂(π)ij|2 < ∞,

(ii)
∑

π∈Irr+(G)
dπtr(µ̂(π)∗µ̂(π)) < ∞,

(iii)
∑

π∈Irr+(G)
dπtr(̂̃µ ∗ µ(π)) < ∞.

(iv)
∑

π∈Irr+(G)
dπtr(µ̂ ∗ µ̃(π)) < ∞.

If this is the case we have

dµ

dg
= 1 +

∑

π∈Irr+(G)

dπtr(µ̂(π)∗π). (3.4)
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Proof. The equivalence of (i) and (ii) is easy linear algebra while that of
(ii) and (iii) is straightforward from (F2) and (F3). That of (iii) and (iv)
follows similarly since for each π ∈ Irr+(G),

tr(µ̂ ∗ µ̃(π)) = tr(µ̂(π)µ̂(π)∗) = tr(µ̂(π)∗µ̂(π)) = tr(̂̃µ ∗ µ(π)).

Necessity follows from (3.3). For sufficiency we define f := 1+
∑

π∈Irr+(G)
dπtr(µ̂(π)∗π),

so that f ∈ L2(G,C). By uniqueness of the Peter-Weyl expansion we have

f̂(π) = µ̂(π)∗.
By the Peter-Weyl theorem, if g ∈ C(G,C) then its Fourier series (as

given by (3.1) or (3.2)) converges uniformly (see e.g. [4]). Hence by Plancherel’s
theorem for each g ∈ C(G,C),

∫

G

g(σ)f(σ)dσ =
∑

π∈Irr(G)

dπ

dπ∑
i,j=1

〈g, πij〉〈πij, f〉

=
∑

π∈Irr(G)

dπtr(ĝ(π)f̂(π)∗)

=
∑

π∈Irr(G)

dπtr(ĝ(π)µ̂(π)).

However by (3.2) and Fubini’s theorem
∫

G

g(σ)µ(dσ) =

∫

G

∑

π∈Irr(G)

dπtr(ĝ(π)π(σ))µ(dσ)

=
∑

π∈Irr(G)

dπtr(ĝ(π)µ̂(π)).

It follows that ∫

G

g(σ)f(σ)dσ =

∫

G

g(σ)µ(dσ). (3.5)

Consequently we have
∫

G
g(σ)=(f)(σ)dσ = 0 for all g ∈ C(G,C). Since

C(G,C) is dense in L2(G,C), it follows that =(f) = 0 (a.e.). Now assume
that B := f−1((−∞, 0)) has positive Haar measure and choose g ∈ C(G,R)
to be strictly negative with supp(g) ⊆ B. Note that such a g can always be
found since Haar measure is regular. We then obtain

0 <

∫

B

g(σ)f(σ)dσ =

∫

G

g(σ)f(σ)dσ =

∫

G

g(σ)µ(dσ) =

∫

B

g(σ)µ(dσ) ≤ 0.

We have derived a contradiction and hence can deduce that f ≥ 0 (a.e.) We
now apply the Riesz representation theorem (see e.g. Theorem 7.2.8 in [5])
to both sides of (3.5) to deduce that f(σ)dσ = µ(dσ) as was required. ¤
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4 Infinitely Divisible Measures on the d-dimensional

Torus

We recall that a probability measure on a locally compact group G is infinitely
divisible if it has a convolution nth root for all n ∈ N. We denote the set of
all such measures by ID(G). It is well known (see e.g. [1], [3], [20]) that there
is a one-to-one correspondence between ID(Rd) and the set of all continuous,
hermitian, negative definite functions η : Rd → C for which η(0) = 0 via the
prescription ∫

Rd

eiu·xµ(dx) = e−η(u),

for each u ∈ Rd. The generic form of η is given by the Lévy-Khinchine
formula

η(u) = ib · u +
1

2
u · Au +

∫

Rd−{0}
(1− eiu·y + iu · y1B1(y))ν(dy), (4.6)

where b ∈ Rd, A is a non-negative definite symmetric d × d matrix, ν is a
Borel measure on Rd − {0} for which

∫
Rd−{0}(|y|2 ∧ 1)ν(dy) < ∞ and B1

is the open ball of radius one centred at the origin. The triple (b, A, ν) is
called the characteristics of µ. µ ∈ M(Rd) is Gaussian (in the usual sense)
if and only if µ ∈ ID(Rd) with characteristics (b, A, 0) and more generally
an arbitrary µ ∈ ID(Rd) with characteristics (b, A, ν) has a non-degenerate
Gaussian component if A is non-singular. Now consider the d-dimensional
torus Πd = Rd/(2πZ)d and let γ : Rd → Πd be the canonical surjection. If
µ ∈ ID(Rd) then it is easily verified that µγ ∈ ID(Πd) where µγ := µ ◦ γ−1.
Any ρ ∈ ID(Πd) which arises in this way will be called projective. There are
probability measures on Πd which are infinitely divisible but not projective
e.g. normalised Haar measure. If µ has a density f then it is easily verified
that µγ has a density fγ where for all x ∈ Πd,

fγ(x) =
∑

n∈Zd

f(x + 2πn). (4.7)

The irreducible representations on Πd are precisely the characters n =
(n1, . . . , nd) ∈ Zd and for each µ ∈ ID(Rd), n ∈ Zd we have

µ̂γ(n) =

∫

Πd

ein·xµγ(dx) =

∫

Rd

ein·yµ(dy) = e−η(n). (4.8)

Proposition 4.1 If µ ∈ ID(Rd) has a non-degenerate Gaussian component
then µγ has an L2 density.
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Proof. Using condition (i) in Theorem 3.1 and (4.8), we see that we must
show that ∑

n∈Zd

|e−η(n))|2 =
∑

n∈Zd

e−2<(η(n)) < ∞.

Now by (4.6)

<(η(n)) =
1

2
n · An +

∫

Rd−{0}
(1− cos(n · y))ν(dy)

≥ 1

2
n · An,

and so ∑

n∈Zd

|e−η(n))|2 ≤
∑

n∈Zd

e−n·An ≤
∑

n∈Zd

e−λn·n < ∞,

where λ > 0 is the minimum eigenvalue of A. ¤
Remarks

1. If µ satisfies the hypothesis of Proposition 4.1, then it is easily verified
that its characteristic function is absolutely integrable and so µ has
a density. Consequently the fact that µγ has a density is immediate
from (4.7). The new information that we have gained from Proposition
4.1 is the square integrability and (3.4) is then the usual Fourier series
expansion.

2. If µ is a standard Gaussian measure (i.e. A = I), then it is well-known
that µγ is a product of Jacobi theta functions - indeed this is easily
verified from (4.7) by using the Poisson summation formula (see e.g.
[9], p.375).

3. The condition that the Gaussian component of µ is non-degenerate
is easily seen to be equivalent to hypoellipticity of the vector fields
{Y1, . . . , Yd}, where Yi =

∑d
j=1 Aij∂j, for 1 ≤ i ≤ d. Indeed an alterna-

tive proof of Proposition 4.1 could be obtained by making use of this
fact and applying Lemma 4.1 in [13].

For an example of a family of infinitely divisible probability measures
on Π1 each of which have an L2 density but with no Gaussian component
(i.e. A = 0), we take µ ∈ ID(R) to be any α-stable distribution for which
0 < α < 2. In this case there exists σ > 0 such that (see e.g. Theorem 14.15
in [20])
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∑

n∈Z
|e−η(n))|2 =

∑

n∈Z
e−2σ|n|α = 1 + 2

∞∑
n=1

e−2σnα

. (4.9)

The convergence of this series follows by comparison with
∞∑

n=1

1

n2
since

limn→∞ n2e−2σnα
= limx→∞ x

2
α e−2σx = 0.

Now suppose that for 0 < α < 2, µα is a rotationally invariant (non-
Gaussian) α-stable distribution on Rd. Then (4.6) can be written in the form
ηα(u) = c||u||α for all u ∈ Rd, where c > 0 and || · || denotes the Euclidean
norm. For later reference we note that µα has characteristics (0, 0, να) where

να(dx) =
K

||x||α+d
for some K > 0 (see e.g. section 3.14 in [20].) We can now

show that µγ
α has an L2-density on Πd, indeed by Hölder’s inequality we have

∑

n∈Zd

e−2c||n||α ≤
∑

n∈Zd

exp

{
−κ

d∑
i=1

|ni|α
}

=

(∑

m∈Z
e−κ|m|α

)d

< ∞ (4.10)

by the remarks following (4.9) where κ := 2cd
2

2−α .
We close this paper with a result that allows us to obtain L2-densities

for a wider class of infinitely divisible distributions on Πd. First we need a
definition. Let ν1 and ν2 be Lévy measures on Rd − {0}. We say that ν1

dominates ν2 if there exists k > 0 such that

ν1(U) ≥ kν2(U)

for all Borel sets U which are bounded away from zero in the sense that
0 /∈ U . For a simple example we take ν2 ≡ να and ν1(dx) = h(x)να(dx)

where h(x) =

{
ec||x|| if ||x|| < 1

1 if ||x|| ≥ 1
and c > 0. In this case we may take

0 < k ≤ 1.
The idea for the following result was suggested to the author by Ming

Liao.

Theorem 4.1 Let µ be an infinitely divisible distribution on Rd with char-
acteristics (b, A, ν). If ν dominates να for some 0 < α < 2 then µγ has a
square-integrable density on Πd.

Proof. Let (Um,m ∈ N) be an increasing sequence of Borel sets that are
bounded away from zero with Um ↑ Rd − {0} as m →∞.
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Using (4.6) we have for each m ∈ N, n ∈ Zd,

<(η(n)) =
1

2
n · An +

∫

Um

(1− cos(n · x))ν(dx) +

∫

Rd−{0}−Um

(1− cos(n · x))ν(dx)

≥
∫

Um

(1− cos(n · x))ν(dx)

≥ k

∫

Um

(1− cos(n · x))να(dx).

Taking limits as m →∞, we deduce that

<(η(n)) ≥ k

∫

Rd−{0}
(1− cos(n · x))να(dx) = kηα(n).

The required result now follows from (4.10). ¤
We remark that the verification of Theorem 3.1(i) for the case of measures

on SU(2) may at least in principle be carried out using the fact that all matrix
elements of irreducible representations can be expressed in terms of Jacobi
polynomials (see e.g. [22], p.97).
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