MAS221: Characterising Completeness of the Real Number Line

This material is non-examinable. It would be best to read it after completing Chapter 2 of the notes.

In this document, we will look at three different ways of characterising completeness of the real number line, and prove that they are all equivalent. These are

- 1. The *completeness property* which says that every non-empty set of real numbers that is bounded above has a least upper bound.
- 2. The nested interval principle Given a sequence of closed intervals ($[a_n, b_n], n \in \mathbb{N}$), which are nested in that $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ for all $n \in \mathbb{N}$, with $\lim_{n\to\infty}(b_n-a_n)=0$, then there exists a unique $x\in\mathbb{R}$ so that $x\in[a_n,b_n]$ for all $n\in\mathbb{N}$.
- 3. Every Cauchy sequence converges.

First we need a lemma:

Lemma 0.0.1. Let $A \subset \mathbb{R}$ be a non-empty set that is bounded above. Suppose there exists $x \in \mathbb{R}$ such that $x + \epsilon$ is an upper bound for A for all $\epsilon > 0$. Then x is also an upper bound for A.

Proof. Suppose that x is not an upper bound for A. Then there exists $y \in A$ for which x < y. But then $x' = x + \frac{1}{2}(y - x)$ is of the form $x + \epsilon$, with $\epsilon > 0$, but x' < y, and this yields the required contradiction.

Theorem 0.0.2. The following three properties of the real numbers are equivalent:

- (i) The nested interval principle,
- (ii) The completeness property,
- (iii) Every Cauchy sequence converges.

Proof. (i) \Rightarrow (ii). Let S be a non-empty set of real numbers that is bounded above. Let $a_1 \in \mathbb{R}$ be such that a_1 is not an upper bound for S (e.g. choose $a \in S$ and $a_1 = a - \epsilon$, where $\epsilon > 0$). Let b_1 be an upper bound for S, so $a_1 < b_1$. Define $c_1 = (a_1 + b_1)/2$. If c_1 is an upper bound for S, choose $b_2 = c_1$ and $a_2 = a_1$. If c_1 is not an upper bound for S, choose $b_2 = b_1$ and $a_2 = c_1$. Either way, we have $[a_2, b_2] \subset [a_1, b_1]$. Now iterate this procedure, i.e. for $k = 2, 3, 4, \ldots$, once we have found a_k and b_k , define $c_k = (a_k + b_k)/2$.

If c_k is an upper bound for S, choose $b_{k+1} = c_k$ and $a_{k+1} = a_k$. If c_k is not an upper bound for S, choose $b_{k+1} = b_k$ and $a_{k+1} = c_k$. Then we have a sequence $([a_n, b_n], n \in \mathbb{N})$ of nested intervals and for all $n \in \mathbb{N}$

$$b_{n+1} - a_{n+1} = (b_n - a_n)/2 = \dots = (b_1 - a_1)/2^n \to 0 \text{ as } n \to \infty.$$

So by the nested interval principle, there exists $x \in \mathbb{R}$ so that $a_n \leq x \leq b_n$ for all $n \in \mathbb{N}$.

Given any y < x, we can find $m \in \mathbb{N}$ so that $y < a_m$, for otherwise $a_n \leq y < x \leq b_n$ for all $n \in \mathbb{N}$, and this contradicts the uniqueness of x. By construction of the sequence of a_n 's, a_m cannot be an upper bound for S, and so neither can y. Given any z > x, we can find $k \in \mathbb{N}$ so that $b_k \leq z$, for otherwise we contradict uniqueness of x, as above. By construction of the sequence of b_n 's, b_k is an upper bound for S and hence so is z. Since every number larger than x is an upper bound for S, and every number smaller than x is not an upper bound, we conclude firstly using Lemma 0.0.1 that x is an upper bound, and secondly that it is the least upper bound.

(ii) \Rightarrow (iii). Let $(a_n, n \in \mathbb{N})$ be Cauchy and define the set $S_1 = \{a_1, a_2, a_3, \ldots\}$. Since every Cauchy sequence is bounded (by Problem 41), S_1 is a bounded (non-empty) set of real numbers, and so it has a greatest lower bound L_1 . Now consider the set $S_2 = \{a_2, a_3, a_4, \ldots\}$, i.e. $S_2 = S_1 \setminus \{a_1\}$. Then S_2 is bounded and its greatest lower bound $L_2 \geq L_1$. We continue in this fashion, defining $S_{k+1} = S_k \setminus \{a_k\}$ and $L_{k+1} = \inf(S_{k+1})$ for $k = 2, 3, \ldots$ In this way we obtain a sequence (L_n) which is monotonic increasing and bounded above (indeed, any upper bound for S is also a bound for (L_n)). Then (L_n) converges by Theorem 2.3.1 and we write $M = \lim_{n \to \infty} L_n$. We will show that $M = \lim_{n \to \infty} a_n$ and then (iii) is established.

By Proposition 1.4.2, since $M = \sup(L_n)$, given any $\epsilon > 0$, there exists $K \in \mathbb{N}$ so that $L_K > M - \epsilon$. Then since (L_n) is monotonic increasing $L_n > M - \epsilon$ for all $n \geq K$. Now since (a_n) is Cauchy, there exists $N_0 \in \mathbb{N}$ so that for all $n, m > N_0, |a_n - a_m| < \frac{\epsilon}{2}$. Next let $N \geq \max\{K, N_0\}$. Since $L_N = \inf\{a_N, a_{N+1}, a_{N+2}, \ldots\}$, by Problem 15(b), there exists m > N so that $a_m < L_N + \epsilon/2$.

Now we put all the pieces together. Given our $\epsilon > 0$, for all $n \geq N$,

$$M - \epsilon < L_K \le L_N \le a_n < a_m + \epsilon/2 < L_N + \epsilon \le M + \epsilon$$

i.e. $M - \epsilon < a_n < M + \epsilon$, and so $M = \lim_{n \to \infty} a_n$.

¹In fact, $M = \liminf_{n \to \infty} a_n$ in the language of Problem 40

$$(iii) \Rightarrow (i)$$
.

Let $([a_n,b_n],n\in\mathbb{N})$ be a sequence of nested intervals. We need to show that there is a unique $x\in[a_n,b_n]$ for all $n\in\mathbb{N}$. First observe that (a_n) is a Cauchy sequence. Indeed since $\lim_{n\to\infty}(b_n-a_n)=0$, given any $\epsilon>0$ there exists $N\in\mathbb{N}$ so that $b_n-a_n<\epsilon$. But for all m>N,

$$a_m - a_n \le b_n - a_n < \epsilon,$$

and so (a_n) is Cauchy. Let $x = \lim_{n \to \infty} a_n$. Since the sequence (a_n) is monotonic increasing, and bounded above (e.g. by b_1), $x = \sup_{n \in \mathbb{N}} a_n \geq a_m$ for all $m \in \mathbb{N}$. We need to show that $x \leq b_n$ for all $n \in \mathbb{N}$, Suppose that we can find $k \in \mathbb{N}$ so that $b_k < x$. Choose $0 < \epsilon < x - b_k$. Since $x = \lim_{n \to \infty} a_n$, we can find $N \in \mathbb{N}$ so that $n > N \Rightarrow x - a_n < \epsilon$. But then $b_k < a_k$ and we have a contradiction. Now suppose that $y \neq x$ also satisfies $y \in [a_n, b_n]$ for all $n \in \mathbb{N}$. Either y < x or y > x. If y < x then y is an upper bound for (a_n) , which is smaller than $x = \sup_{n \in \mathbb{N}} a_n$ and that yields a contradiction. Now suppose y > x. By similar arguments to the above we can show that $x = \lim_{n \to \infty} b_n = \inf_{n \in \mathbb{N}} b_n$, and we again obtain a contradiction.

If $(A_n, n \in \mathbb{N})$ is a sequence of subsets of a set A, define

$$\bigcap_{n\in\mathbb{N}} A_n = \{ a \in A; a \in A_n \text{ for all } n \in \mathbb{N} \}.$$

Then, under the given hypotheses, the nested interval principle tells us that $\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset$. This would not necessarily be true if we replaced closed intervals with open intervals, e.g. $\bigcap_{n\in\mathbb{N}}(0,1/n)=\emptyset$.