MAS221 Analysis (Semester 1)– Solutions to Problems 20 to 24.

20. Limit is 1. (a) (i) 30, (ii) 300, (iii) 3000, (iv) 30000, (v) 3000000000.

(b) Take $N \in \mathbb{N}$ to be the smallest natural number so that N+1 exceeds $\frac{3}{\epsilon}$. The existence of such an N is guaranteed by the Archimedean property of \mathbb{R} .

Let's just check we fully understand where N came from. To satisfy the definition of convergence, given any $\epsilon > 0$, we need to find $N \in \mathbb{N}$ so that $|1 + 3/n - 1| < \epsilon$ for all n > N, i.e. $3/n < \epsilon$ for all n > N, i.e. $n > \epsilon/3$ for all n > N. So we need to find N so that each of $N + 1, N + 2, N + 3, \dots$ are greater than $3/\epsilon$, and that's precisely what we've done.

- 21. Limits are (a) 1, (b) 0, (c) 0, (d) 0. Take N to be the smallest natural number so that N + 1 exceeds (a) $\frac{1}{\epsilon}$, (b) $\frac{3}{\epsilon}$, (c) $\frac{1}{\sqrt{\epsilon}}$, (d) $\frac{1}{\epsilon^2}$. In each case, your approach should be as in the solution to Problem 20.
- 22. *n*th term is $\frac{n}{2n-1}$. Proceed as in Problem 20. Given $\epsilon > 0$, use the Archimedean property to find $N \in \mathbb{N}$ so that $N > \frac{1+2\epsilon}{4\epsilon}$. Then straightforward algebra shows that for n > N we get $\left|\frac{n}{2n-1} \frac{1}{2}\right| < \epsilon$, as required.
- 23. Since (x_n) converges to x, given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ so that if n > N then $|x_n x| < \epsilon$. But then by Theorem 1.3.1,

$$||x_n - |x|| \le |x_n - x| < \epsilon,$$

and the result follows. Converse is false in general, - e.g consider $(-1)^n$. However, the converse is true in the case where (x_n) is a null sequence (see Problem 30), i.e. x = 0. For in that case, for all $n \in \mathbb{N}$,

$$||x_n| - 0| = |x_n| = |x_n - 0|.$$

24. Given any $\epsilon > 0$ we can find $N \in \mathbb{N}$ so that if n > N then

$$|b_n - 0| = b_n \le a_n = |a_n - 0| < \epsilon.$$