MAS221 Analysis (Semester 1)— Solutions to Problems 20 to 24.
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Limit is 1. (a) (i) 30, (ii) 300, (iii) 3000, (iv) 30000, (v) 30000000000.

(b)Given any € > 0, by the Archimedean property of R, we can find
N € N so that N > 3/e. Then for all n > N, we have

la, — 1| =3/n < 3/N <e.

Limits are (a) 1, (b) 0, (c¢) 0, (d) 0. Argue as in the solution to 20)b)
but this time use the Archimedean property to find N € N which is
greater than: (a) £, (b) 2, (c) \/Lg, (d) L.

nth term is 5. Given € > 0, use the Archimedean property to find
N € N so that N > %. Then straightforward algebra shows that for

n > N we get ‘anq — %| < €, as required.

Since (x,) converges to z, given any € > 0, there exists N € N so that
if n > N then |z, — z| < e. But then by Theorem 1.3.1,

|0 = |2]| < fan — 2] <

and the result follows. Converse is false in general, - e.g consider (—1)".

However, the converse is true in the case where (x,,) is a null sequence
(see Problem 30), i.e. x = 0. For in that case, for all n € N,

||zn| — 0] = |xn| = |2, — Ol'

Given any € > 0 we can find N € N so that if n > N then

|b, — 0] = b, < a, = |a, — 0] <e.



