
Solutions to MAS350 Exam 2015-16

1. (i) For (I) we need An ∈ Σ for all n ∈ N. But we also need S ∈ Σ
and Ac ∈ Σ whenever A ∈ Σ.

For (II) we need to replace m : S → [0,∞) with m : Σ → [0,∞]
and m(∅) = 0. We also need that the sequence (An) is such that
An ∈ Σ for all n ∈ N, and that the sets in (An) are mutually
disjoint. Suppose (An) is a sequence of sets in Σ1 ∩ Σ2. Then
An ∈ Σ1 for all n ∈ N and so

⋃∞
n=1 An ∈ Σ1. But also An ∈ Σ2

for all n ∈ N and so
⋃∞

n=1 An ∈ Σ2. Hence
⋃∞

n=1An ∈ Σ1 ∩ Σ2. If
A ∈ Σ1 ∩ Σ2, A

c ∈ Σ1 and Ac ∈ Σ2. Hence Ac ∈ Σ1 ∩ Σ2.

(b) Σ1∪Σ2 is not in general a σ-algebra for if A ∈ Σ1 and B ∈ Σ2

there is no good reason why A∪B ∈ Σ1∪Σ2. For example let S =
{1, 2, 3},Σ1 = {∅, {1}, {2, 3}, S},Σ2 = {∅, {2}, {1, 3}, S}, A = {1}, B =
{2}. Then A ∪B = {1, 2} is neither in Σ1 nor Σ2.

(iii) (a)

A4B = (A ∪B)− (A ∩B)

= (A ∪B) ∩ (A ∩B)c

= (A ∪B) ∩ (Ac ∪Bc)

= [(A ∪B) ∩ Ac] ∪ [(A ∪B) ∩Bc]

= (A ∩ Ac) ∪ (B ∩ Ac) ∪ (A ∩Bc) ∪ (B ∩Bc)

= (B ∩ Ac) ∪ (A ∩Bc) = (B − A) ∪ (A−B).

(b) B −A = (−1/3, 0] ∪ [1, 2) and A−B = [1/2, 3/4]. The three
intervals are mutually disjoint, and so λ(A4B) = 1/3 + 1 +
1/4 = 19/12.

(c) λ(S) = 3 and P (A4B) = λ(A4B)/3 = 19/36.

2. (i) To show that f−1((a,∞)) ∈ Σ ⇒ f−1([a,∞)) ∈ Σ use [a,∞) =⋂∞
n=1(a− 1/n,∞) and so

f−1([a,∞)) =
∞⋂
n=1

f−1((a− 1/n,∞))

and the result follows since Σ is closed under countable intersec-
tions.

To show that f−1([a,∞)) ∈ Σ⇒ f−1((a,∞)) ∈ Σ, use

f−1((a,∞)) =
∞⋃
n=1

f−1([a+ 1/n,∞))
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and the fact that Σ is closed under countable unions.

(ii) Either use the fact that {a} ∈ B(R) together with the fact that f
is measurable and so f−1(A) ∈ Σ, for all A ∈ B(R).

or Use {a} =
⋂∞

n=1[a, a+ 1/n) ∈ B(R) and argue as in (i).

(iii) For all a ∈ R, (f ◦ g)−1((a,∞)) = g−1(f−1(a,∞). Now f is Borel
measurable and so f−1((a,∞)) = A ∈ B(R). Hence g−1(A) ∈
Σ. So we conclude that (g ◦ f)−1((a,∞)) ∈ Σ and so g ◦ f is
measurable.

(iv) Write h = f ◦ τy where τy(x) = x+ y for all x ∈ R. The mapping
τy is continuous and hence measurable and so h is measurable by
(iii).

(v) If f is differentiable then it is continuous and so measurable. For
each x ∈ R,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Now x → f(x + h) is measurable by (iv), and so x → f(x+h)−f(x)
h

is measurable since sums and scalar multiples of measurable func-
tions are. Finally f ′ is measurable since it is a pointwise limit of
measurable functions.

(vi) f and f (1) are measurable by (v). Then for all r = 2, . . . , n, if
f (r−1) is measurable, for each x ∈ R,

f (r)(x) = lim
h→0

f (r−1)(x+ h)− f (r−1)(x)

h
,

and so f (r) is also measurable by the argument of (v), and the
result follows.

(vii) We use the fact that lim supn→∞ fn and lim infn→∞ fn are mea-
surable functions, and that limn→∞ fn(x) exists for some x ∈ S
if and only if lim supn→∞ fn(x) = lim infn→∞ fn(x), in which case
limn→∞ fn(x) is their common value. So

A = {x ∈ S; lim sup
n→∞

fn(x) = lim inf
n→∞

fn(x)} = g−1({0},

where g = lim supn→∞ fn − lim infn→∞ fn is measurable. The re-
sult follows by (ii).

3. (i) (a) If f =
∑n

i=1 ci1Ai
where n ∈ N, ci ≥ 0 and Ai ∈ Σ, for all

i = 1, . . . , n being mutually disjoint with
⋃n

i=1Ai = S, then∫
S
fdm =

∑n
i=1 cim(Ai) ∈ [0,∞].
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(b)
∫
S
fdm = sup

{∫
S
gdm; g simple 0 ≤ g ≤ f

}
∈ [0,∞].

(c) Write f = f+−f−, where f+ = max{f, 0} and f− = max{−f, 0}.
Then

∫
S
fdm =

∫
S
f+dm−

∫
S
f−dm ∈ [−∞,∞], with the re-

striction that both integrals on the right hand side are not
infinite.
f is integrable if

∫
S
fdm ∈ (−∞,∞) (equivalently

∫
S
|f |dm <

∞).

(ii) (a) f+ = 41[−1,0) + 111[0,1), f− = 71[−2,1) + 31[1,2) + 21[2,5).

(b) Since |f | = f+ + f−, we have∫
R
|f |dλ =

∫
R
f+dλ+

∫
R
f−dλ

= (4 + 11) + (7 + 3 + [2× 3)] = 31

(iii) g is measurable as it is a product of measurable functions.

We have
∣∣ x

1+x2

∣∣ = |x|
1+x2 ≤ 1

2
, for since (1− |x|)2 ≥ 0, we have

2|x| ≤ 1 + x2. But then we have |g(x)| ≤ 1
2
|f(x)| for all

x ∈ R, (1) and so g is integrable as by monotonicity,∫
R
|g|dλ ≤ 1

2

∫
R
|f |dλ <∞.

(iv) Since g > 0, the function 1/g is continuous, hence measurable
and

∫∞
0

1/g(x)dx is well defined, and takes values in [0,∞].
Using monotonicity, and the hint, for all n ∈ N we have∫ ∞

1

1

g(x)
dx ≥

∫ n

1

1

g(x)
dx =

∫ n

1

n∑
k=2

1

g(x)
1[k−1,k)(x)dx.

But on the interval [k − 1, k), 1/g(x) ≥ 1/k and so∫ ∞
1

1

g(x)
dx ≥

∫ n

1

n∑
k=2

1

k
1[k−1,k)(x)dx

=
n∑

k=2

1

k

∫ n

1

1[k−1,k)(x)dx

=
n∑

k=2

1

k
=∞.

4. (i) Let (fn) be a sequence of measurable functions from S to R which
converge pointwise to a (measurable) function f . Suppose there
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is an integrable function g : S → R so that |fn| ≤ g for all n ∈ N.
Then f is integrable and∫

S

fdm = lim
n→∞

∫
S

fndm.

(You can also assume that fn is integrable for all n ∈ N, but that
is not strictly necessary as it is established within the proof of the
theorem.)

(ii) Since n

ex2+n
≤ 1 for all n ∈ N, x ∈ R, we can use dominated

convergence to prove the first result taking g = |f | and fn =
n

ex2+n
f .

For the second result, it follows from what has just been proved

and linearity that limn→∞
∫
R f(x)

(
1− n

ex2+n

)
dx = 0 and so

lim
n→∞

∫
R

ex
2

ex2 + n
f(x)dx = 0.

Alternatively use dominated convergence again as in the first part.

(iii) (a)

∂

∂t

∫
S

f(t, x)dm(x) = lim
c→0

∫
S

f(t+ c, x)− f(t, x)

c
dm(x).

By the mean value theorem, for each x ∈ S there exists
0 < θ(x) < 1 so that f(t+c,x)−f(t,x)

c
= ∂f

∂t
(t + θ(x)c, x) and by

assumption,
∣∣∂f
∂t

(t+ θ(x)c, x)
∣∣ ≤ h(x), where h is integrable.

So using the dominated convergence theorem (where we im-
plicitly replace c by an arbitrary sequence (cn)), we obtain

lim
c→0

∫
S

f(t+ c, x)− f(t, x)

c
dm(x) =

∫
S

lim
c→0

f(t+ c, x)− f(t, x)

c
dm(x)

=

∫
S

∂f(t, x)

∂t
dm(x).

(b) Implementing (a), define g(t, x) = sin(2tx2)f(x)
x2 . Then (I)

x → g(t, x) is integrable since
∣∣∣sin(2tx2)f(x)

x2

∣∣∣ ≤ ∣∣∣f(x)
x2

∣∣∣. For

(II) we have ∂g(t,x)
∂t

= 2 cos(2tx2)f(x), and (III) follows since
| cos(2tx2)f(x)| ≤ |f(x)|. By (a) we conclude that

∂

∂t

∫
[1,∞)

sin(2tx2)
f(x)

x2
dx = 2

∫
[1,∞)

cos(2tx2)f(x)dx.
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(iv) ∫
S

|f − fn|dλ =

∫
S

|f1(n,∞)dλ.

We have |f1(n,∞)| ≤ |f | for all n ∈ N, and limn→∞ 1(n,∞)(x) = 0
for all n ∈ N, since given any x ≥ 0 there exists N ∈ N such that
N > x.1 The result then follows by the dominated convergence
theorem.

5. (i) (a) lim supn→∞An =
⋂

n∈N
⋃∞

k=nAk (1), lim infn→∞An =
⋃

n∈N
⋂∞

k=nAk.
Both sets are in F as the σ–algebra is closed under finite and
countable unions and intersections.

(b) As the events
⋃∞

k=nAk form a decreasing sequence, by conti-
nuity of probability we have

P

(
lim sup
n→∞

An

)
= lim

n→∞
P

(
∞⋃
k=n

Ak

)

= lim sup
n→∞

P

(
∞⋃
k=n

Ak

)
≥ lim sup

n→∞
P (An),

where the last line is by monotonicity.

(c)

B − lim inf
n→∞

An = B ∩

(⋃
n∈N

∞⋂
k=n

Ak

)c

= B ∩
⋂
n∈N

∞⋃
k=n

Ac
k

=
⋂
n∈N

∞⋃
k=n

(B ∩ Ac
k)

= lim sup
n→∞

(B − An)

For the last part, take B = Ω.

(ii) Write E(min{X, a}) =
∫

Ω
min{X(ω), a}dP (ω).

Now for each ω ∈ Ω,min{X(ω), a} ≤ a and min{X(ω), a} ≤
X(ω), so by monotonicity, E(min{X, a}) ≤

∫
Ω
adP (ω) = 1 and

E(min{X, a}) ≤
∫

Ω
X(ω)dP (ω) = E(X). Hence E(min{X, a}) ≤

min{E(X), a}).
1This is the Archimedean property of R, but they don’t need to say that.
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(a) E(X) = 3/4 so E(min{X, a}) ≤ 3/4.

(b) E(X) =
∑10

i=1 E(Yi) = 1 + 2 + · · ·+ 10 = 1
2
.10.11 = 55. Hence

E(min{X, a}) ≤ 54.
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