Solutions to MAS350 Exam 2015-16

 (i) For (I) we need A_n ∈ Σ for all n ∈ N. But we also need S ∈ Σ and A^c ∈ Σ whenever A ∈ Σ.
For (II) we need to replace m : S → [0,∞) with m : Σ → [0,∞] and m(Ø) = 0. We also need that the sequence (A_n) is such that A_n ∈ Σ for all n ∈ N, and that the sets in (A_n) are mutually disjoint. Suppose (A_n) is a sequence of sets in Σ₁ ∩ Σ₂. Then A_n ∈ Σ₁ for all n ∈ N and so ⋃_{n=1}[∞] A_n ∈ Σ₁. But also A_n ∈ Σ₂ for all n ∈ N and so ⋃_{n=1}[∞] A_n ∈ Σ₂. Hence ⋃_{n=1}[∞] A_n ∈ Σ₁ ∩ Σ₂. If A ∈ Σ₁ ∩ Σ₂, A^c ∈ Σ₁ and A^c ∈ Σ₂. Hence A^c ∈ Σ₁ ∩ Σ₂.
(b) Σ₁ ∪ Σ₂ is not in general a σ-algebra for if A ∈ Σ₁ and B ∈ Σ₂ there is no good reason why A∪B ∈ Σ₁∪Σ₂. For example let S = {1,2,3}, Σ₁ = {Ø, {1}, {2,3}, S}, Σ₂ = {Ø, {2}, {1,3}, S}, A = {1}, B = {2}. Then A∪B = {1,2} is neither in Σ₁ nor Σ₂.

$$(iii)$$
 (a)

$$A \triangle B = (A \cup B) - (A \cap B)$$

= $(A \cup B) \cap (A \cap B)^c$
= $(A \cup B) \cap (A^c \cup B^c)$
= $[(A \cup B) \cap A^c] \cup [(A \cup B) \cap B^c]$
= $(A \cap A^c) \cup (B \cap A^c) \cup (A \cap B^c) \cup (B \cap B^c)$
= $(B \cap A^c) \cup (A \cap B^c) = (B - A) \cup (A - B).$

(b) $B - A = (-1/3, 0] \cup [1, 2)$ and A - B = [1/2, 3/4]. The three intervals are mutually disjoint, and so $\lambda(A \triangle B) = 1/3 + 1 + 1/4 = 19/12$.

(c)
$$\lambda(S) = 3$$
 and $P(A \triangle B) = \lambda(A \triangle B)/3 = 19/36$.

2. (i) To show that $f^{-1}((a,\infty)) \in \Sigma \Rightarrow f^{-1}([a,\infty)) \in \Sigma$ use $[a,\infty) = \bigcap_{n=1}^{\infty} (a-1/n,\infty)$ and so

$$f^{-1}([a,\infty)) = \bigcap_{n=1}^{\infty} f^{-1}((a-1/n,\infty))$$

and the result follows since Σ is closed under countable intersections.

To show that $f^{-1}([a,\infty)) \in \Sigma \Rightarrow f^{-1}((a,\infty)) \in \Sigma$, use

$$f^{-1}((a,\infty)) = \bigcup_{n=1}^{\infty} f^{-1}([a+1/n,\infty))$$

and the fact that Σ is closed under countable unions.

- (ii) *Either* use the fact that $\{a\} \in \mathcal{B}(\mathbb{R})$ together with the fact that f is measurable and so $f^{-1}(A) \in \Sigma$, for all $A \in \mathcal{B}(\mathbb{R})$. *or* Use $\{a\} = \bigcap_{n=1}^{\infty} [a, a+1/n) \in \mathcal{B}(\mathbb{R})$ and argue as in (i).
- (iii) For all $a \in \mathbb{R}$, $(f \circ g)^{-1}((a, \infty)) = g^{-1}(f^{-1}(a, \infty))$. Now f is Borel measurable and so $f^{-1}((a, \infty)) = A \in \mathcal{B}(\mathbb{R})$. Hence $g^{-1}(A) \in \Sigma$. So we conclude that $(g \circ f)^{-1}((a, \infty)) \in \Sigma$ and so $g \circ f$ is measurable.
- (iv) Write $h = f \circ \tau_y$ where $\tau_y(x) = x + y$ for all $x \in \mathbb{R}$. The mapping τ_y is continuous and hence measurable and so h is measurable by (iii).
- (v) If f is differentiable then it is continuous and so measurable. For each $x \in \mathbb{R}$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Now $x \to f(x+h)$ is measurable by (iv), and so $x \to \frac{f(x+h)-f(x)}{h}$ is measurable since sums and scalar multiples of measurable functions are. Finally f' is measurable since it is a pointwise limit of measurable functions.

(vi) f and $f^{(1)}$ are measurable by (v). Then for all r = 2, ..., n, if $f^{(r-1)}$ is measurable, for each $x \in \mathbb{R}$,

$$f^{(r)}(x) = \lim_{h \to 0} \frac{f^{(r-1)}(x+h) - f^{(r-1)}(x)}{h},$$

and so $f^{(r)}$ is also measurable by the argument of (v), and the result follows.

(vii) We use the fact that $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$ are measurable functions, and that $\lim_{n\to\infty} f_n(x)$ exists for some $x \in S$ if and only if $\limsup_{n\to\infty} f_n(x) = \liminf_{n\to\infty} f_n(x)$, in which case $\lim_{n\to\infty} f_n(x)$ is their common value. So

$$A = \{x \in S; \limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x)\} = g^{-1}(\{0\},$$

where $g = \limsup_{n \to \infty} f_n - \liminf_{n \to \infty} f_n$ is measurable. The result follows by (ii).

3. (i) (a) If $f = \sum_{i=1}^{n} c_i \mathbf{1}_{A_i}$ where $n \in \mathbb{N}, c_i \geq 0$ and $A_i \in \Sigma$, for all $i = 1, \ldots, n$ being mutually disjoint with $\bigcup_{i=1}^{n} A_i = S$, then $\int_S f dm = \sum_{i=1}^{n} c_i m(A_i) \in [0, \infty].$

- (b) $\int_{S} f dm = \sup \left\{ \int_{S} g dm; g \text{ simple } 0 \le g \le f \right\} \in [0, \infty].$
- (c) Write $f = f_+ f_-$, where $f_+ = \max\{f, 0\}$ and $f_- = \max\{-f, 0\}$. Then $\int_S f dm = \int_S f_+ dm - \int_S f_- dm \in [-\infty, \infty]$, with the restriction that both integrals on the right hand side are not infinite. f is integrable if $\int_S f dm \in (-\infty, \infty)$ (equivalently $\int_S |f| dm < 1$

f is integrable if $\int_S f dm \in (-\infty, \infty)$ (equivalently $\int_S |f| dm < \infty$).

(ii) (a) $f_+ = 4\mathbf{1}_{[-1,0)} + 11\mathbf{1}_{[0,1)}, f_- = 7\mathbf{1}_{[-2,1)} + 3\mathbf{1}_{[1,2)} + 2\mathbf{1}_{[2,5)}.$ (b) Since $|f| = f_+ + f_-$, we have

$$\int_{\mathbb{R}} |f| d\lambda = \int_{\mathbb{R}} f_{+} d\lambda + \int_{\mathbb{R}} f_{-} d\lambda$$
$$= (4+11) + (7+3+[2\times 3)] = 31$$

(iii) g is measurable as it is a product of measurable functions. We have $\left|\frac{x}{1+x^2}\right| = \frac{|x|}{1+x^2} \leq \frac{1}{2}$, for since $(1-|x|)^2 \geq 0$, we have $2|x| \leq 1+x^2$. But then we have $|g(x)| \leq \frac{1}{2}|f(x)|$ for all $x \in \mathbb{R}$, (1) and so g is integrable as by monotonicity,

$$\int_{\mathbb{R}} |g| d\lambda \leq \frac{1}{2} \int_{\mathbb{R}} |f| d\lambda < \infty.$$

(iv) Since g > 0, the function 1/g is continuous, hence measurable and $\int_0^\infty 1/g(x)dx$ is well defined, and takes values in $[0, \infty]$. Using monotonicity, and the hint, for all $n \in \mathbb{N}$ we have

$$\int_{1}^{\infty} \frac{1}{g(x)} dx \ge \int_{1}^{n} \frac{1}{g(x)} dx = \int_{1}^{n} \sum_{k=2}^{n} \frac{1}{g(x)} \mathbf{1}_{[k-1,k)}(x) dx.$$

But on the interval $[k-1,k), 1/g(x) \ge 1/k$ and so

$$\int_{1}^{\infty} \frac{1}{g(x)} dx \geq \int_{1}^{n} \sum_{k=2}^{n} \frac{1}{k} \mathbf{1}_{[k-1,k)}(x) dx$$
$$= \sum_{k=2}^{n} \frac{1}{k} \int_{1}^{n} \mathbf{1}_{[k-1,k)}(x) dx$$
$$= \sum_{k=2}^{n} \frac{1}{k} = \infty.$$

4. (i) Let (f_n) be a sequence of measurable functions from S to \mathbb{R} which converge pointwise to a (measurable) function f. Suppose there

is an integrable function $g: S \to \mathbb{R}$ so that $|f_n| \leq g$ for all $n \in \mathbb{N}$. Then f is integrable and

$$\int_{S} f dm = \lim_{n \to \infty} \int_{S} f_n dm.$$

(You can also assume that f_n is integrable for all $n \in \mathbb{N}$, but that is not strictly necessary as it is established within the proof of the theorem.)

(ii) Since $\frac{n}{e^{x^2}+n} \leq 1$ for all $n \in \mathbb{N}, x \in \mathbb{R}$, we can use dominated convergence to prove the first result taking g = |f| and $f_n = \frac{n}{e^{x^2}+n}f$.

For the second result, it follows from what has just been proved and linearity that $\lim_{n\to\infty} \int_{\mathbb{R}} f(x) \left(1 - \frac{n}{e^{x^2} + n}\right) dx = 0$ and so

$$\lim_{n \to \infty} \int_{\mathbb{R}} \frac{e^{x^2}}{e^{x^2} + n} f(x) dx = 0.$$

Alternatively use dominated convergence again as in the first part. (iii) (a)

$$\frac{\partial}{\partial t} \int_{S} f(t, x) dm(x) = \lim_{c \to 0} \int_{S} \frac{f(t + c, x) - f(t, x)}{c} dm(x).$$

By the mean value theorem, for each $x \in S$ there exists $0 < \theta(x) < 1$ so that $\frac{f(t+c,x)-f(t,x)}{c} = \frac{\partial f}{\partial t}(t+\theta(x)c,x)$ and by assumption, $\left|\frac{\partial f}{\partial t}(t+\theta(x)c,x)\right| \leq h(x)$, where h is integrable. So using the dominated convergence theorem (where we implicitly replace c by an arbitrary sequence (c_n)), we obtain

$$\lim_{c \to 0} \int_{S} \frac{f(t+c,x) - f(t,x)}{c} dm(x) = \int_{S} \lim_{c \to 0} \frac{f(t+c,x) - f(t,x)}{c} dm(x)$$
$$= \int_{S} \frac{\partial f(t,x)}{\partial t} dm(x).$$

(b) Implementing (a), define $g(t,x) = \sin(2tx^2)\frac{f(x)}{x^2}$. Then (I) $x \to g(t,x)$ is integrable since $\left|\sin(2tx^2)\frac{f(x)}{x^2}\right| \leq \left|\frac{f(x)}{x^2}\right|$. For (II) we have $\frac{\partial g(t,x)}{\partial t} = 2\cos(2tx^2)f(x)$, and (III) follows since $|\cos(2tx^2)f(x)| \leq |f(x)|$. By (a) we conclude that

$$\frac{\partial}{\partial t} \int_{[1,\infty)} \sin(2tx^2) \frac{f(x)}{x^2} dx = 2 \int_{[1,\infty)} \cos(2tx^2) f(x) dx.$$

(iv)

$$\int_{S} |f - f_n| d\lambda = \int_{S} |f \mathbf{1}_{(n,\infty)} d\lambda|$$

We have $|f\mathbf{1}_{(n,\infty)}| \leq |f|$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} \mathbf{1}_{(n,\infty)}(x) = 0$ for all $n \in \mathbb{N}$, since given any $x \geq 0$ there exists $N \in \mathbb{N}$ such that N > x.¹ The result then follows by the dominated convergence theorem.

- 5. (i) (a) $\limsup_{n\to\infty} A_n = \bigcap_{n\in\mathbb{N}} \bigcup_{k=n}^{\infty} A_k$ (1), $\liminf_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}} \bigcap_{k=n}^{\infty} A_k$. Both sets are in \mathcal{F} as the σ -algebra is closed under finite and countable unions and intersections.
 - (b) As the events $\bigcup_{k=n}^{\infty} A_k$ form a decreasing sequence, by continuity of probability we have

$$P\left(\limsup_{n \to \infty} A_n\right) = \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} A_k\right)$$
$$= \limsup_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} A_k\right)$$
$$\geq \limsup_{n \to \infty} P(A_n),$$

where the last line is by monotonicity.

(c)

$$B - \liminf_{n \to \infty} A_n = B \cap \left(\bigcup_{n \in \mathbb{N}} \bigcap_{k=n}^{\infty} A_k \right)^c$$
$$= B \cap \bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} A_k^c$$
$$= \bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} (B \cap A_k^c)$$
$$= \limsup_{n \to \infty} (B - A_n)$$

For the last part, take $B = \Omega$.

(ii) Write $\mathbb{E}(\min\{X, a\}) = \int_{\Omega} \min\{X(\omega), a\} dP(\omega)$. Now for each $\omega \in \Omega$, $\min\{X(\omega), a\} \leq a$ and $\min\{X(\omega), a\} \leq X(\omega)$, so by monotonicity, $\mathbb{E}(\min\{X, a\}) \leq \int_{\Omega} adP(\omega) = 1$ and $\mathbb{E}(\min\{X, a\}) \leq \int_{\Omega} X(\omega) dP(\omega) = \mathbb{E}(X)$. Hence $\mathbb{E}(\min\{X, a\}) \leq \min\{E(X), a\}$.

¹This is the Archimedean property of \mathbb{R} , but they don't need to say that.

- (a) $\mathbb{E}(X) = 3/4$ so $\mathbb{E}(\min\{X, a\}) \le 3/4$. (b) $\mathbb{E}(X) = \sum_{i=1}^{10} \mathbb{E}(Y_i) = 1 + 2 + \dots + 10 = \frac{1}{2} \cdot 10.11 = 55$. Hence $\mathbb{E}(\min\{X, a\}) \le 54$.