MAS331: Metric Spaces 201617
Solutions to Week 2 Problems on Chapter 1

5. Let r > 0 and let a = (a1,...,ay),b = (b1,...,b,) € R™. Suppose that b €

Bi(a,r). Then dy(b,a) < r. But di(a,b) > da(a,b) by 3(a) so da(a,b) <
dy(b,a) < r and hence b € Ba(a,r). Thus By(a,r) C Ba(a,r).

Now suppose that b € By(a,r). Then da(b,a) < r. But da2(a,b) > deo(a,b)
by 3(a) so de(a,b) < da(b,a) < r and hence b € Bu(a,r). Thus
By(a,r) C Boo(a,r).

Bi(a,r) C Ba(a,r) C By(a,r)

Next, suppose that b € B (a, 7). Then dw(b,a) < . Using 3(b),
di(a,b) < nd(a,b) <rsob€ Bi(a,r). Thus By (a, ) C Bi(a,r).
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Boc(ay %) g Bl(a,r) g Boo(aar)

Finally, suppose that b € By (a, ﬁ) Then deo(b,a) < ﬁ Using 3(c),

da(a,b) < \/ndeo(a,b) < r so b e By(a,r). Thus By(a, ﬁ) C Bs(a,r).




B (a, %) C Bi(a,r) and By (a, L) C Bs(a,r).

Vn
Here, as in the notes, the subscripts indicate which metric we are using.

When n > 1, all the inclusions C are strict inclusions.

. Here’s a picture of the graphs between 0 and 5:

To compute deo(f1, f2), we need to find the maximum value for |f(x) —
g(z)| with € I. The only possible z values to consider are stationary
points of f — g and the two endpoints of the interval I.

Atz =0, |f(z) — g(x)] =6; at =5, | f(z) — g(x)] = 4. Next, let’s work
out the stationary points of f —g. The difference f(x)—g(z) is 22 —7x+6,
so its derivative is 2x — 7; thus there is only one stationary point, at © = %,
and the graphs are a distance of % apart there. Since % > 6, this is the
required answer. So

2
doo(2® — 41,32 — 6) = Z5

To compute di (f1, f2), we calculate the area between the two graphs. Now
the graphs meet when x2 — 42 = 3x — 6, which occurs at x = 1 (and again
outside the interval [0, 5]). We have 22 — 4z > 3z — 6 for 0 < o < 1, and
22— 4r<3r—6forl1 <x<5. So

5
dy(2? — 42,32z —6) = /|(x2—4x)—(3x—6)|dx
0
1
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B[f,1] = {9 € C0,1] | dwo(f,9) <1},

and it follows from the definitions that

doo(f,9) = sup{lg(z) — f(z)| = = € [0,1]} = sup{lg(x)] : = € [0,1]}



so that doo(f,g) < 1 if and only |g(z)| < 1 for all z € [0,1]. This means
that the closed ball is the set of functions whose graph lies between the
lines y =1 and y = —1.

_J 0 ifx=y
d(z,y) { 1 otherwise

It is clear from this definition that d satisfies M1 and M2.

It remains to verify the triangle inequality M3. Let z,y,z € X. We want
to show that d(z,y) < d(z,z) + d(z,y). If d(x,y) = 0 then the inequality
obviously holds. Therefore we assume that d(z,y) = 1 so that = # y. It
follows that z must be different from one of x or y so that d(z,z) =1 or
d(z,y) =1 or both. Hence

d(z,z) +d(z,y) 2 1 =d(z,y).

9. Let f,g € Cla,b]. Then, since |f(z)—g(x)| = |g(x)— f(z)| for all z € [a, ],

we have
a(fg) = / (@) — g@)lda
= /Ig r)|dx
= di(g, f),

so that d; satisfies axiom M2.
Now let h € Cla,b]. Since

[f (@) =h(2)| = [(f(2) = g(x))+(9(x) = h(2))| < |f(z)=g(x)[+]|g(z) —h(z)]

for all = € [a, b], we have
di(f,h) = / () — h(a)lde
< / F(2) — 9(a)| + lg(x) — hia)|dx

_ / (@) — g(a)lda + /ab|g<x>—h<x>|dx

= di fv )+d1(g7h)7

which proves M3.

10. (a) (4,2), (2,1) and the origin are collinear so d((4, 2), (2,1)) = d2((4,2), (2,1)) =

V5. (4,2), (—2,3) and the origin are not collinear so we have to go
via the origin and

d((4,2),(-2,3)) = d2((4,2), (0,0)) + da((—2,3), (0,0)) = 2v5+V/13.



(b) (0,—1) is at distance 1 from (0,0) so the only points within  of
(0, —1) are on the line through (—1,0) and (0,0) (the y-axis) so
1
B((0,-1),3) = {(0,y) : =0.5 >y > ~1.5}.

There are two types of points in B((0,—1),2). There are those that
are collinear with (—1,0) and (0,0) at distance < 2 from (—1,0).
That gives {(0,y) : 1 > y > —3}. There are those that we reach
via the (0,0) which must be < 1 from (0,0). That gives {(z,y) :
22 +y? < 1}. So

B((0,-1),2) = {(z,y) :2* +y* <lor (zx=0and —3 <y < 1)}

B((0,-1),3) B((0,-1),2)

In the right-hand diagram (—1,0) is included but all other points
on the unit circle are excluded. In the left-hand diagram, both end-
points, (0,—0.5) and (0, —1.5), are excluded.

11. First do the case d(z,y) = /|z —y|. Take z y,z E R. For M1, first

d(z,x) = /|r —z| = 0, and then if \/|z — y = 0 we find
lz —y| = (V]z —y|)? =0, sothatx—y
For M2, we simply note that d(y,z) = /|y — 2| = /|z — y| = d(z,y).

For M3, we want to know if

d(z,y) = ]z —y| <d(z,2) +d(z,y) = ]|z — 2| + ]z — .

If we square both sides, we end up asking if the inequality

[z —yl <z =zl + |z —yl+ 2|z — z2[[z — 2|
holds. The answer clearly is yes since we already have |z — y| < |z — z| +
[z =yl
In the second case, if we take x = 1, y = —1 and z = 0 we find that
d(z,y) = (1—(=1))? =4, but d(z,2) +d(z,y) = 12+ (—1)? = 2. Thus M3
is not satisfied and this d is not a metric. (Here M1 and M2 are satisfied.)




12.

13.

14.

For M1, we first check that d(z,y) > 0 for all z,y € X: as d; and d»
satisfy M1,
d(z,y) = di(2,y) + dz(2,y) = 0.

Also, as d; and ds satisfy M1, d(z,z) = di(z,x) + do(z,2) = 0+ 0 = 0.
And if d(x,y) = 0 then, as di(z,y) > 0 and dz(z,y) > 0, we must have
dy(z,y) = da(z,y) =0 and so x = y.

For M2, d; and d> satisfy M2 so
d(z,y) = di(z,y) + da(z,y) = di(y, ) + da(y, ) = d(y, z).
For M3, d; and ds satisfy M3 so, for z,y,z € X,

d(z,z) = di(z,z)+ds(x,2)

(di(z,y) + di(y, 2)) + (d2(,y) + d2(y, 2))
(di(z,y) + d2(,y)) + (d1(y, 2) + d2(y, 2))
d(z,y) + d(y, 2).

Thus d satisfies M1,2,3 and d is a metric on X.

d1((0,0), (1,0)) = 1 = d((0,0), (1,0)) so d((0,0),(1,0)) = 0. As (0,0) #
(1,0), d fails axiom M1 and is therefore not a metric.

IN

(a) Let n = 2. Then one of |x; — y1|, |x2 — y2| is max(|z; — y;|) and
the other is min{|z; — y;|}. This includes the case where |x1 — y1| =
|z2 — ya| and max(|z; — y;|) = min(|z; — y;|). Hence

max(|z; — y;|) + min(|e; — yi]) = |21 — y1| + |22 — y2],

that is, e(x,y) = d1(x,y).

(b) Let z = (0,0,0),y = (1,2,3) and z = (2,2,4).
Then e(z,y)) =3+1=4,e(y,2) =14+0=1. But e(z,2) =4+2=
6 > e(x,y) + ey, 2) so axiom M3 fails and e is not a metric.



