MAS331: Metric Spaces 2016–17 Solutions to Week 2 Problems on Chapter 1

5. Let r > 0 and let $a = (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{R}^n$. Suppose that $b \in B_1(a, r)$. Then $d_1(b, a) < r$. But $d_1(a, b) \ge d_2(a, b)$ by 3(a) so $d_2(a, b) \le d_1(b, a) < r$ and hence $b \in B_2(a, r)$. Thus $B_1(a, r) \subseteq B_2(a, r)$.

Now suppose that $b \in B_2(a, r)$. Then $d_2(b, a) < r$. But $d_2(a, b) \ge d_{\infty}(a, b)$ by 3(a) so $d_{\infty}(a, b) \le d_2(b, a) < r$ and hence $b \in B_{\infty}(a, r)$. Thus $B_2(a, r) \subseteq B_{\infty}(a, r)$.

Next, suppose that $b \in B_{\infty}(a, \frac{r}{n})$. Then $d_{\infty}(b, a) < \frac{r}{n}$. Using 3(b), $d_1(a, b) \leq nd_{\infty}(a, b) < r$ so $b \in B_1(a, r)$. Thus $B_{\infty}(a, \frac{r}{n}) \subseteq B_1(a, r)$.

Finally, suppose that $b \in B_{\infty}(a, \frac{r}{\sqrt{n}})$. Then $d_{\infty}(b, a) < \frac{r}{\sqrt{n}}$. Using 3(c), $d_2(a, b) \leq \sqrt{n} d_{\infty}(a, b) < r$ so $b \in B_2(a, r)$. Thus $B_2(a, \frac{r}{\sqrt{n}}) \subseteq B_2(a, r)$.

$$B_{\infty}(a, \frac{r}{n}) \subseteq B_1(a, r) \text{ and } B_{\infty}(a, \frac{r}{\sqrt{n}}) \subseteq B_2(a, r).$$

Here, as in the notes, the subscripts indicate which metric we are using. When n > 1, all the inclusions \subseteq are strict inclusions.

6. Here's a picture of the graphs between 0 and 5:

	$ \frown$	
V		N
	•	
Ν		И
Ľ	\smile	

To compute $d_{\infty}(f_1, f_2)$, we need to find the maximum value for |f(x) - g(x)| with $x \in I$. The only possible x values to consider are stationary points of f - g and the two endpoints of the interval I.

At x = 0, |f(x) - g(x)| = 6; at x = 5, |f(x) - g(x)| = 4. Next, let's work out the stationary points of f - g. The difference f(x) - g(x) is $x^2 - 7x + 6$, so its derivative is 2x - 7; thus there is only one stationary point, at $x = \frac{7}{2}$, and the graphs are a distance of $\frac{25}{4}$ apart there. Since $\frac{25}{4} > 6$, this is the required answer. So

$$d_{\infty}(x^2 - 4x, 3x - 6) = \frac{25}{4}$$

To compute $d_1(f_1, f_2)$, we calculate the area between the two graphs. Now the graphs meet when $x^2 - 4x = 3x - 6$, which occurs at x = 1 (and again outside the interval [0, 5]). We have $x^2 - 4x \ge 3x - 6$ for $0 \le x \le 1$, and $x^2 - 4x \le 3x - 6$ for $1 \le x \le 5$. So

$$d_{1}(x^{2} - 4x, 3x - 6) = \int_{0}^{5} |(x^{2} - 4x) - (3x - 6)| dx$$

$$= \int_{0}^{1} (x^{2} - 4x) - (3x - 6) dx + \int_{1}^{5} (3x - 6) - (x^{2} - 4x) dx$$

$$= \left[\frac{x^{3}}{3} - \frac{7x^{2}}{2} + 6x\right]_{0}^{1} + \left[\frac{7x^{2}}{2} - \frac{x^{3}}{3} - 6x\right]_{1}^{5}$$

$$= \left(\frac{17}{6} - 0\right) + \left(\frac{95}{6} - \left(-\frac{17}{6}\right)\right)$$

$$= \frac{129}{6} = \frac{43}{2}.$$

7.

$$B[f,1] = \{g \in C[0,1] \mid d_{\infty}(f,g) \leq 1\}$$

and it follows from the definitions that

$$d_{\infty}(f,g) = \sup\{|g(x) - f(x)| : x \in [0,1]\} = \sup\{|g(x)| : x \in [0,1]\}$$

so that $d_{\infty}(f,g) \leq 1$ if and only $|g(x)| \leq 1$ for all $x \in [0,1]$. This means that the closed ball is the set of functions whose graph lies between the lines y = 1 and y = -1.

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$$

It is clear from this definition that d satisfies M1 and M2.

It remains to verify the triangle inequality M3. Let $x, y, z \in X$. We want to show that $d(x, y) \leq d(x, z) + d(z, y)$. If d(x, y) = 0 then the inequality obviously holds. Therefore we assume that d(x, y) = 1 so that $x \neq y$. It follows that z must be different from one of x or y so that d(x, z) = 1 or d(z, y) = 1 or both. Hence

$$d(x,z) + d(z,y) \ge 1 = d(x,y).$$

9. Let $f, g \in C[a, b]$. Then, since |f(x) - g(x)| = |g(x) - f(x)| for all $x \in [a, b]$, we have

$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx$$
$$= \int_a^b |g(x) - f(x)| dx$$
$$= d_1(g, f),$$

so that d_1 satisfies axiom M2.

Now let $h \in C[a, b]$. Since

8.

$$|f(x) - h(x)| = |(f(x) - g(x)) + (g(x) - h(x))| \le |f(x) - g(x)| + |g(x) - h(x)|$$

for all $x \in [a, b]$, we have

$$d_{1}(f,h) = \int_{a}^{b} |f(x) - h(x)| dx$$

$$\leq \int_{a}^{b} |f(x) - g(x)| + |g(x) - h(x)| dx$$

$$= \int_{a}^{b} |f(x) - g(x)| dx + \int_{a}^{b} |g(x) - h(x)| dx$$

$$= d_{1}(f,g) + d_{1}(g,h),$$

which proves M3.

10. (a) (4,2), (2,1) and the origin are collinear so $d((4,2), (2,1)) = d_2((4,2), (2,1)) = \sqrt{5}$. (4,2), (-2,3) and the origin are not collinear so we have to go via the origin and

$$d((4,2),(-2,3)) = d_2((4,2),(0,0)) + d_2((-2,3),(0,0)) = 2\sqrt{5} + \sqrt{13}.$$

(b) (0,-1) is at distance 1 from (0,0) so the only points within $\frac{1}{2}$ of (0,-1) are on the line through (-1,0) and (0,0) (the y-axis) so

$$B((0,-1),\frac{1}{2}) = \{(0,y) : -0.5 > y > -1.5\}$$

There are two types of points in B((0, -1), 2). There are those that are collinear with (-1, 0) and (0, 0) at distance < 2 from (-1, 0). That gives $\{(0, y) : 1 > y > -3\}$. There are those that we reach via the (0, 0) which must be < 1 from (0, 0). That gives $\{(x, y) : x^2 + y^2 < 1\}$. So

$$B((0, -1), 2) = \{(x, y) : x^2 + y^2 < 1 \text{ or } (x = 0 \text{ and } -3 < y < 1)\}.$$

In the right-hand diagram (-1,0) is included but all other points on the unit circle are excluded. In the left-hand diagram, both endpoints, (0, -0.5) and (0, -1.5), are excluded.

11. First do the case $d(x,y) = \sqrt{|x-y|}$. Take $x, y, z \in \mathbb{R}$. For M1, first $d(x,x) = \sqrt{|x-x|} = 0$, and then if $\sqrt{|x-y|} = d(x,y) = 0$ we find $|x-y| = (\sqrt{|x-y|})^2 = 0$, so that x = y.

For M2, we simply note that $d(y, x) = \sqrt{|y - x|} = \sqrt{|x - y|} = d(x, y)$. For M3, we want to know if

$$d(x,y) = \sqrt{|x-y|} \leqslant d(x,z) + d(z,y) = \sqrt{|x-z|} + \sqrt{|z-y|}.$$

If we square both sides, we end up asking if the inequality

 $|x-y|\leqslant |x-z|+|z-y|+2\sqrt{|x-z||z-x|}$

holds. The answer clearly is yes since we already have $|x - y| \leq |x - z| + |z - y|$.

In the second case, if we take x = 1, y = -1 and z = 0 we find that $d(x, y) = (1 - (-1))^2 = 4$, but $d(x, z) + d(z, y) = 1^2 + (-1)^2 = 2$. Thus M3 is not satisfied and this d is not a metric. (Here M1 and M2 are satisfied.)

12. For M1, we first check that $d(x,y) \ge 0$ for all $x, y \in X$: as d_1 and d_2 satisfy M1,

$$d(x,y) = d_1(x,y) + d_2(x,y) \ge 0.$$

Also, as d_1 and d_2 satisfy M1, $d(x, x) = d_1(x, x) + d_2(x, x) = 0 + 0 = 0$. And if d(x, y) = 0 then, as $d_1(x, y) \ge 0$ and $d_2(x, y) \ge 0$, we must have $d_1(x, y) = d_2(x, y) = 0$ and so x = y.

For M2, d_1 and d_2 satisfy M2 so

$$d(x,y) = d_1(x,y) + d_2(x,y) = d_1(y,x) + d_2(y,x) = d(y,x).$$

For M3, d_1 and d_2 satisfy M3 so, for $x, y, z \in X$,

$$d(x,z) = d_1(x,z) + d_2(x,z)$$

$$\leq (d_1(x,y) + d_1(y,z)) + (d_2(x,y) + d_2(y,z))$$

$$= (d_1(x,y) + d_2(x,y)) + (d_1(y,z) + d_2(y,z))$$

$$= d(x,y) + d(y,z).$$

Thus d satisfies M1,2,3 and d is a metric on X.

- 13. $d_1((0,0), (1,0)) = 1 = d_2((0,0), (1,0))$ so d((0,0), (1,0)) = 0. As $(0,0) \neq (1,0)$, *d* fails axiom M1 and is therefore not a metric.
- 14. (a) Let n = 2. Then one of $|x_1 y_1|, |x_2 y_2|$ is $\max(|x_i y_i|)$ and the other is $\min\{|x_i y_i|\}$. This includes the case where $|x_1 y_1| = |x_2 y_2|$ and $\max(|x_i y_i|) = \min(|x_i y_i|)$. Hence

 $\max(|x_i - y_i|) + \min(|x_i - y_i|) = |x_1 - y_1| + |x_2 - y_2|,$

that is, $e(x, y) = d_1(x, y)$.

(b) Let x = (0, 0, 0), y = (1, 2, 3) and z = (2, 2, 4). Then e(x, y) = 3 + 1 = 4, e(y, z) = 1 + 0 = 1. But e(x, z) = 4 + 2 = 6 > e(x, y) + e(y, z) so axiom M3 fails and e is not a metric.