
MAS331: Metric Spaces 2016–17
Solutions to Week 2 Problems on Chapter 1

5. Let r > 0 and let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. Suppose that b ∈
B1(a, r). Then d1(b, a) < r. But d1(a, b) ≥ d2(a, b) by 3(a) so d2(a, b) ≤
d1(b, a) < r and hence b ∈ B2(a, r). Thus B1(a, r) ⊆ B2(a, r).

Now suppose that b ∈ B2(a, r). Then d2(b, a) < r. But d2(a, b) ≥ d∞(a, b)
by 3(a) so d∞(a, b) ≤ d2(b, a) < r and hence b ∈ B∞(a, r). Thus
B2(a, r) ⊆ B∞(a, r).

B1(a, r) ⊆ B2(a, r) ⊆ B∞(a, r)

Next, suppose that b ∈ B∞(a, r
n ). Then d∞(b, a) < r

n . Using 3(b),
d1(a, b) ≤ nd∞(a, b) < r so b ∈ B1(a, r). Thus B∞(a, r

n ) ⊆ B1(a, r).

B∞(a, r
2 ) ⊆ B1(a, r) ⊆ B∞(a, r)

Finally, suppose that b ∈ B∞(a, r√
n

). Then d∞(b, a) < r√
n

. Using 3(c),

d2(a, b) ≤
√
nd∞(a, b) < r so b ∈ B2(a, r). Thus B2(a, r√

n
) ⊆ B2(a, r).

B∞(a, r√
2
) ⊆ B2(a, r) ⊆ B∞(a, r)
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B∞(a,
r

n
) ⊆ B1(a, r) and B∞(a,

r√
n

) ⊆ B2(a, r).

Here, as in the notes, the subscripts indicate which metric we are using.

When n > 1, all the inclusions ⊆ are strict inclusions.

6. Here’s a picture of the graphs between 0 and 5:

To compute d∞(f1, f2), we need to find the maximum value for |f(x) −
g(x)| with x ∈ I. The only possible x values to consider are stationary
points of f − g and the two endpoints of the interval I.

At x = 0, |f(x)− g(x)| = 6; at x = 5, |f(x)− g(x)| = 4. Next, let’s work
out the stationary points of f−g. The difference f(x)−g(x) is x2−7x+6,
so its derivative is 2x−7; thus there is only one stationary point, at x = 7

2 ,
and the graphs are a distance of 25

4 apart there. Since 25
4 > 6, this is the

required answer. So

d∞(x2 − 4x, 3x− 6) =
25

4
.

To compute d1(f1, f2), we calculate the area between the two graphs. Now
the graphs meet when x2− 4x = 3x− 6, which occurs at x = 1 (and again
outside the interval [0, 5]). We have x2 − 4x ≥ 3x− 6 for 0 6 x 6 1, and
x2 − 4x 6 3x− 6 for 1 6 x 6 5. So

d1(x2 − 4x, 3x− 6) =

∫ 5

0

|(x2 − 4x)− (3x− 6)| dx

=

∫ 1

0

(x2 − 4x)− (3x− 6) dx +

∫ 5

1

(3x− 6)− (x2 − 4x) dx

=

[
x3

3
− 7x2

2
+ 6x

]1
0

+

[
7x2

2
− x3

3
− 6x

]5
1

=

(
17

6
− 0

)
+

(
95

6
−
(
−17

6

))
=

129

6
=

43

2
.

7.
B[f, 1] = {g ∈ C[0, 1] | d∞(f, g) 6 1},

and it follows from the definitions that

d∞(f, g) = sup{|g(x)− f(x)| : x ∈ [0, 1]} = sup{|g(x)| : x ∈ [0, 1]}
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so that d∞(f, g) 6 1 if and only |g(x)| 6 1 for all x ∈ [0, 1]. This means
that the closed ball is the set of functions whose graph lies between the
lines y = 1 and y = −1.

8.

d(x, y) =

{
0 if x = y
1 otherwise

It is clear from this definition that d satisfies M1 and M2.

It remains to verify the triangle inequality M3. Let x, y, z ∈ X. We want
to show that d(x, y) 6 d(x, z) + d(z, y). If d(x, y) = 0 then the inequality
obviously holds. Therefore we assume that d(x, y) = 1 so that x 6= y. It
follows that z must be different from one of x or y so that d(x, z) = 1 or
d(z, y) = 1 or both. Hence

d(x, z) + d(z, y) > 1 = d(x, y).

9. Let f, g ∈ C[a, b]. Then, since |f(x)−g(x)| = |g(x)−f(x)| for all x ∈ [a, b],
we have

d1(f, g) =

∫ b

a

|f(x)− g(x)|dx

=

∫ b

a

|g(x)− f(x)|dx

= d1(g, f),

so that d1 satisfies axiom M2.

Now let h ∈ C[a, b]. Since

|f(x)−h(x)| = |(f(x)−g(x))+(g(x)−h(x))| 6 |f(x)−g(x)|+|g(x)−h(x)|

for all x ∈ [a, b], we have

d1(f, h) =

∫ b

a

|f(x)− h(x)|dx

6
∫ b

a

|f(x)− g(x)|+ |g(x)− h(x)|dx

=

∫ b

a

|f(x)− g(x)|dx +

∫ b

a

|g(x)− h(x)|dx

= d1(f, g) + d1(g, h),

which proves M3.

10. (a) (4, 2), (2, 1) and the origin are collinear so d((4, 2), (2, 1)) = d2((4, 2), (2, 1)) =√
5. (4, 2), (−2, 3) and the origin are not collinear so we have to go

via the origin and

d((4, 2), (−2, 3)) = d2((4, 2), (0, 0)) +d2((−2, 3), (0, 0)) = 2
√

5 +
√

13.
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(b) (0,−1) is at distance 1 from (0, 0) so the only points within 1
2 of

(0,−1) are on the line through (−1, 0) and (0, 0) (the y-axis) so

B((0,−1),
1

2
) = {(0, y) : −0.5 > y > −1.5}.

There are two types of points in B((0,−1), 2). There are those that
are collinear with (−1, 0) and (0, 0) at distance < 2 from (−1, 0).
That gives {(0, y) : 1 > y > −3}. There are those that we reach
via the (0, 0) which must be < 1 from (0, 0). That gives {(x, y) :
x2 + y2 < 1}. So

B((0,−1), 2) = {(x, y) : x2 + y2 < 1 or (x = 0 and − 3 < y < 1)}.

B((0,−1), 1
2 ) B((0,−1), 2)

In the right-hand diagram (−1, 0) is included but all other points
on the unit circle are excluded. In the left-hand diagram, both end-
points, (0,−0.5) and (0,−1.5), are excluded.

11. First do the case d(x, y) =
√
|x− y|. Take x, y, z ∈ R. For M1, first

d(x, x) =
√
|x− x| = 0, and then if

√
|x− y| = d(x, y) = 0 we find

|x− y| = (
√
|x− y|)2 = 0, so that x = y.

For M2, we simply note that d(y, x) =
√
|y − x| =

√
|x− y| = d(x, y).

For M3, we want to know if

d(x, y) =
√
|x− y| 6 d(x, z) + d(z, y) =

√
|x− z|+

√
|z − y|.

If we square both sides, we end up asking if the inequality

|x− y| 6 |x− z|+ |z − y|+ 2
√
|x− z||z − x|

holds. The answer clearly is yes since we already have |x− y| 6 |x− z|+
|z − y|.
In the second case, if we take x = 1, y = −1 and z = 0 we find that
d(x, y) = (1− (−1))2 = 4, but d(x, z)+d(z, y) = 12 +(−1)2 = 2. Thus M3
is not satisfied and this d is not a metric. (Here M1 and M2 are satisfied.)
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12. For M1, we first check that d(x, y) ≥ 0 for all x, y ∈ X: as d1 and d2
satisfy M1,

d(x, y) = d1(x, y) + d2(x, y) ≥ 0.

Also, as d1 and d2 satisfy M1, d(x, x) = d1(x, x) + d2(x, x) = 0 + 0 = 0.
And if d(x, y) = 0 then, as d1(x, y) ≥ 0 and d2(x, y) ≥ 0, we must have
d1(x, y) = d2(x, y) = 0 and so x = y.

For M2, d1 and d2 satisfy M2 so

d(x, y) = d1(x, y) + d2(x, y) = d1(y, x) + d2(y, x) = d(y, x).

For M3, d1 and d2 satisfy M3 so, for x, y, z ∈ X,

d(x, z) = d1(x, z) + d2(x, z)

≤ (d1(x, y) + d1(y, z)) + (d2(x, y) + d2(y, z))

= (d1(x, y) + d2(x, y)) + (d1(y, z) + d2(y, z))

= d(x, y) + d(y, z).

Thus d satisfies M1,2,3 and d is a metric on X.

13. d1((0, 0), (1, 0)) = 1 = d2((0, 0), (1, 0)) so d((0, 0), (1, 0)) = 0. As (0, 0) 6=
(1, 0), d fails axiom M1 and is therefore not a metric.

14. (a) Let n = 2. Then one of |x1 − y1|, |x2 − y2| is max(|xi − yi|) and
the other is min{|xi − yi|}. This includes the case where |x1 − y1| =
|x2 − y2| and max(|xi − yi|) = min(|xi − yi|). Hence

max(|xi − yi|) + min(|xi − yi|) = |x1 − y1|+ |x2 − y2|,

that is, e(x, y) = d1(x, y).

(b) Let x = (0, 0, 0), y = (1, 2, 3) and z = (2, 2, 4).

Then e(x, y)) = 3 + 1 = 4, e(y, z) = 1 + 0 = 1. But e(x, z) = 4 + 2 =
6 > e(x, y) + e(y, z) so axiom M3 fails and e is not a metric.
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