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1 Introduction

The aim of this paper is to introduce some new concepts into stochastic analysis of
Hilbert space valued processes with a view to gaining deeper insights into the structure
of Lévy processes and other processes which can be built from these.
We begin with an investigation of Hilbert space valued martingale-valued measures.
Finite dimensional versions of these (called “martingale measures” therein) were first
introduced by Walsh [38] to formulate stochastic partial differential equations (SPDEs)
driven by a continuous space-time white noise. They were further developed in [23] and
in [3] they were generalised to deal with SPDEs with jumps. In [2], the author found
them a convenient tool for simultaneously dealing with stochastic integration with re-
spect to the Brownian and the compensated small jumps part of a Lévy process, when
the integrands depend both on time and the jump-space variable. Here we extend this
?? Work carried out at The Nottingham Trent University
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latter construction to the infinite dimensional context. In particular, we investigate
a class of martingale-valued measures whose covariance structure is determined by a
trace class positive operator valued measure. This is precisely the covariance structure
found in the martingale part of a Lévy process- indeed it is well known that the covari-
ance operator of Brownian motion is trace class (see e.g. [11], proposition 2.15, p.55).
Here we show that the covariance of the compensated small jumps is also determined
by such operators, which in this case are a continuous superposition of finite rank
operators. Our approach exploits the Lévy-Itô decomposition of a Lévy process into
drift, Brownian, small jump and large jump parts which has recently been extended
to type 2 Banach spaces by Albeverio and Rüdiger [1].
Having established a natural class of martingale-valued measures M , we develop both
weak and strong stochastic integrals of suitable predictable processes. In the first
of these the integrand (F (t, x), t ≥ 0, x ∈ E) (where E is a Lusin space) is vector
valued and we generalise the approach of Kunita [24], who dealt with the case where

M is a martingale, to construct the scalar valued process
∫ t

0

∫
E
(F (s, x),M(ds, dx))H ,

where (·, ·)H is the inner product in the Hilbert space H. In the second of these,
(G(t, x), t ≥ 0, x ∈ E) is operator-valued and we generalise the stochastic integral
of Métivier [28] who dealt with the case where M is a martingale (see also [29],
[11] for the case of Brownian motion), to construct the Hilbert space valued object∫ t

0

∫
E

G(s, x)M(ds, dx).
As an application of these techniques, we first study the stochastic convolution∫ t

0
S(r)dX(r), of a C0-semigroup (S(r), r ≥ 0) with infinitesimal generator J with

a Lévy process X = (X(t), t ≥ 0). We then apply this to investigate the generalised
Langevin equation

dY (t) = JY (t) + dX(t), (1)

whose unique weak solution is the Ornstein-Uhlenbeck process. Equations of this type
driven by general Lévy processes, were first considered by S.J.Wolfe ([39]) in the
scalar case where J is a negative constant. Sato and Yamazoto [36], [37] generalised
this to the multi-dimensional case wherein −J is a matrix all of whose eigenvalues
have positive real parts. The generalisation to infinite dimensions was first carried out
by A.Chojnowska-Michalik [9], [8] (see also [11], [6] for the Brownian motion case).
Using our stochastic integration theory we are able to give an alternative construction
of the solution in which the Lévy-Itô decomposition is preserved within its structure.
This is useful for later analysis as we see below.
We remark that, in the finite dimensional case, Ornstein-Uhlenbeck processes driven
by non-Gaussian Lévy processes have recently been applied to the construction of
self-similar processes via the Lamperti transform ([18]) and to models of stochastic
volatility in the theory of option pricing [5], [31]. In the latter case, it may be that the
infinite dimensional model as considered here, is more appropriate, as it can approxi-
mate the very large number of incremental market activities which lead to volatility
change.
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Finally, we consider an infinite-dimensional generalisation of self-decomposability. We
recall that a real-valued random variable X is self-decomposable if for any 0 < c < 1,
there exists a random variable Yc, which is independent of X such that

X
d
= cX + Yc. (2)

Such random variables were first studied by Paul Lévy and they arise naturally as
weak limits of normalised sums of independent (but not necessarily identically dis-
tributed) random variables (see e.g. [35], section 3.15). The definition was extended
to Banach space valued random variables by Jurek and Vervaat [22] (with c still a
scalar) while Jurek and Mason [21] considered the finite-dimensional case of “oper-
ator self-decomposability” where c is replaced by a semigroup (e−tJ , t ≥ 0), with J
an invertible matrix. Jurek [19] also investigated the case where J is a bounded op-
erator in a Banach space. It is a consequence of results found in [39], [21], [22] and
[37] that X is (operator) self-decomposable if and only if it can be embedded as X(0)
in a stationary Ornstein-Uhlenbeck process. Furthermore a necessary and sufficient
condition for the required stationarity is that the Lévy measure ν of X has a certain
logarithmic moment, more precisely

∫
|x|≥1

log(1 + |x|)ν(dx) < ∞, so we see that this

is a condition on the large jumps of X (see also [16]).
Here we generalise operator self-decomposability by taking (e−tJ , t ≥ 0) to be a con-
traction semigroup acting in a Hilbert space H (see [20] for the case where it is a
group acting in a Banach space). We emphasise that, in contrast to the cases dis-
cussed in the previous paragraph, J is typically an unbounded operator. We are able
to obtain a partial generalisation of the circle of ideas described above which relates
self-decomposability, stationary Ornstein-Uhlenbeck processes and logarithmic mo-
ments of the Lévy measure. The failure to obtain a full generalisation arises from
dropping the condition that J is invertible, which appears to be unnatural in this set-
ting and also from the fact that the operators e−tJ are no longer invertible. We note
that the link between stationarity and logarithmic moments has also been established
in [9] using different methods, and by a more indirect route than that given here (see
also [15]).
The stochastic integration theory developed herein will have extensive further ap-
plications. In particular, it can be used to construct solutions to stochastic differen-
tial equations driven by Hilbert space valued processes with jumps, generalising the
Brownian motion case ([11], [25]). The details will appear elsewhere (see [27] for work
in a similar direction).

Notation. R+ = [0,∞). If X is a topological space, then B(X) denotes its Borel σ-
algebra. If H is a real separable Hilbert space, b(H) is the space of bounded Borel
measurable real-valued functions on H and L(H) is the ∗-algebra of all bounded linear
operators on H. The domain of a linear operator T acting in H is denoted as Dom(T ).

Acknowledgement. I am grateful to Zbigniew Jurek for some useful comments and the
referee for a number of useful observations.
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2 Martingale-Valued Measures With Values in a Hilbert Space

2.1 Hilbert Space Valued Martingales

Let (Ω,F , (Ft, t ≥ 0), P ) be a stochastic base wherein the filtration (Ft, t ≥ 0) satisfies
the usual hypotheses of completeness and right continuity. Let H be a real separable
Hilbert space with inner product (·, ·)H and associated norm || · ||. Throughout this
article, unless contra-indicated, all random variables and processes are understood to
be H-valued. To any such random variable X, we associate the real-valued random
variable ||X||, where ||X||(ω) = ||X(ω)||, for each ω ∈ Ω.
The predictable σ-algebra P is the smallest sub-σ-algebra of B(R+)⊗F with respect
to which all mappings F : R+ × Ω → H are measurable, wherein (F (t), t ≥ 0) is
adapted and t → F (t, ω) is strongly left continuous for each ω ∈ Ω.
If G is a sub-σ-algebra of F and X is a random variable such that E(||X||) < ∞,
the conditional expectation of X given G is the unique G-measurable random variable
EG(X) for which

E(1AX) = E(1AEG(X)),

for all A ∈ G (see e.g. [11], section 1.3). Many familiar properties of conditional
expectation from the case H = R carry over to the general case, in particular

EG((X, Y )H) = (X,EG(Y ))H , a.s.

if E(||X|| ∨ ||Y ||) < ∞ and X is G-measurable.
An adapted process X = (X(t), t ≥ 0) is a martingale if E(||X(t)||) < ∞ and
E(X(t)|Fs) = X(s) (a.s.), for all 0 ≤ s ≤ t < ∞. A martingale is said to be
square-integrable if E(||X(t)||2) < ∞, for all t ≥ 0. By proposition 3 of [24], any
square-integrable martingale has a strongly càdlàg modification.
If X is a square-integrable martingale, then (||X(t)||2, t ≥ 0) is a non-negative uni-
formly integrable submartingale, hence by the Doob-Meyer decomposition, there
is a unique increasing, predictable integrable process (〈X〉(t), t ≥ 0) such that
(||X(t)||2−〈X〉(t), t ≥ 0) is a real-valued martingale (see e.g. [24]). If Y = (Y (t), t ≥ 0)
is another square-integrable martingale, we may, for each t ≥ 0, define 〈X, Y 〉(t) in
the usual way by polarisation, i.e.

〈X, Y 〉(t) =
1

4
[〈X + Y 〉(t)− 〈X − Y 〉(t)].

Note that for all 0 ≤ s ≤ t < ∞,

E((X(t)−X(s), Y (t)− Y (s))H |Fs) = E(〈X, Y 〉(t)− 〈X,Y 〉(s)|F(s)).

Two square-integrable martingales X and Y are said to be orthogonal if 〈X, Y 〉(t) = 0,
for all t ≥ 0 (or equivalently, if ((X(t), Y (t))H , t ≥ 0) is a real-valued martingale).

Note. A different definition of 〈·〉 for Hilbert space valued martingales is given in [11],
section 3.4. We prefer to use that of [24] as it appears to be more general.
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2.2 Martingale-Valued Measures

Let (S, Σ) be a Lusin space, so that S is a Hausdorff space which is the image of a
Polish space under a continuous bijection and Σ is a Borel subalgebra of B(S) (see
e.g. Chapter 8 of [10]). We assume that there is a ring A ⊂ Σ and an increasing
sequence (Sn, n ∈ N) in Σ such that

• S =
⋃

n∈N Sn

• Σn := Σ|Sn ⊆ A, for all n ∈ N.

A martingale-valued measure is a set function M : R+ ×A × Ω → H which satisfies
the following (c.f [38], [23]):

1. M(0, A) = M(t, ∅) = 0 (a.s.), for all A ∈ A, t ≥ 0.
2. M(t, A ∪B) = M(t, A) + M(t, B) (a.s.), for all t ≥ 0 and all disjoint A,B ∈ A.
3. (M(t, A), t ≥ 0) is a square-integrable martingale for each A ∈ A and is orthogonal

to (M(t, B), t ≥ 0), whenever A,B ∈ A are disjoint.
4. sup{E(||M(t, A)||2), A ∈ Σn} < ∞, for all n ∈ N, t > 0.

Note. In Walsh’s terminology [38], M is a “σ-finite L2-valued orthogonal martingale
measure”.

Whenever 0 ≤ s ≤ t ≤ ∞,M((s, t], ·) := M(t, ·)−M(s, ·). M is said to have indepen-
dent increments if M((s, t], A) is independent of Fs for all A ∈ A, 0 ≤ s ≤ t < ∞.

Given a martingale valued measure M , for each t ≥ 0, we can define a (random)
real-valued set function 〈M〉(t, ·) on A and (3) ensures that

〈M〉(t, A ∪B) = 〈M〉(t, A) + 〈M〉(t, B) a.s.

for all t ≥ 0 and all disjoint A,B ∈ A. A theorem of Walsh ([38], theorem 2.7, p.299)
enables us to “regularise” 〈M〉 to obtain a (random) predictable σ-finite measure on
B(R+) ⊗ Σ, which coincides with 〈M〉 (a.s.) on sets of the form [0, t] × A, where
t > 0, A ∈ A. In the sequel, we will abuse notation to the extent of also denoting this
measure by 〈M〉.
A positive-operator valued measure or (POV measure for short) on (S, Σ) is a family
(TA, A ∈ A) of bounded positive self-adjoint operators in H for which

• T∅ = 0,
• TA∪B = TA + TB, for all disjoint A,B ∈ A

Note. This is a slightly different use of the term POV measure than that employed
in the theory of measurement in quantum mechanics (see e.g. [13], section 3.1).

We say that a POV measure is decomposable if there exists a strongly measurable
family of bounded positive self-adjoint operators in H, {Tx, x ∈ S} and a σ-finite
measure λ on (S, Σ) such that
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TAψ =

∫

A

Txψλ(dx),

for each A ∈ A, ψ ∈ H, where the integral is understood in the Bochner sense.

We recall that a bounded linear operator Z on H is trace class if tr(|Z|) < ∞, where

|Z| = (ZZ∗)
1
2 . Let L1(H) denote the space of all trace class operators on H, then

L1(H) is a real Banach space with respect to the norm ||Z||1 = tr(|Z|) (see e.g.
[34], section VI.6). A POV measure is said to be trace class if each of its constituent
operators is.
Now let M be a martingale-valued measure on R+ × S. We say that it is nuclear if
there exists a pair (T, ρ) where

• T = (TA, A ∈ A) is a trace class POV measure in H,
• ρ is a σ-finite measure on R+,

such that for all 0 ≤ s ≤ t < ∞, A ∈ A, ψ ∈ H,

E(|(M((s, t], A), ψ)H |2) = (ψ, TAψ)ρ((s, t]) (3)

A nuclear martingale-valued measure is decomposable if (TA, A ∈ A) is decomposable.

Proposition 2.1 If M is a nuclear martingale-valued measure, then for all t ≥ 0, A ∈
A,

E(〈M〉(t, A)) = ||TA||1ρ((0, t]).

Proof. Let (en, n ∈ N) be a maximal orthonormal set in H. We have

E(〈M〉(t, A)) = E(||M(t, A)||2)

=
∞∑

n=1

E(|(en,M(t, A))H |2)

= ρ((0, t])
∞∑

n=1

(en, TAen)

= ρ((0, t])tr(TA). ¤

2.3 Lévy Processes

Let X be a Lévy process taking values in H, so that X has stationary and independent
increments, is stochastically continuous and satisfies X(0) = 0 (a.s.). If pt is the law of
X(t) for each t ≥ 0, then (pt, t ≥ 0) is a weakly continuous convolution semigroup of
probability measures on H. We have the Lévy-Khinchine formula (see e.g. [32]) which
yields for all t ≥ 0, ψ ∈ H,

E(exp(i(ψ, X(t))H) = eta(ψ),

where
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a(ψ) = i(ζ, ψ)H − 1

2
(ψ, Qψ)

+

∫

H−{0}
(ei(u,ψ)H − 1− i(u, ψ)H1{||u||<1})ν(du), (4)

where ζ ∈ H, Q is a positive, self-adjoint trace class operator on H and ν is a Lévy
measure on H − {0}, i.e.

∫
H−{0}(||x||2 ∧ 1)ν(dx) < ∞. We call the triple (ζ,Q, ν) the

characteristics of the process X and the mapping a, the characteristic exponent of X.

Example 1 (Q- Brownian motion)

Q- Brownian motion BQ = (BQ(t), t ≥ 0) has characteristics (0, Q, 0). It is a Gaussian
process with continuous sample paths and covariance operator Q (see e.g. [11], section
4.1) so that E((ψ,BQ(t))2

H) = t(ψ,Qψ), for each ψ ∈ H, t ≥ 0. If (λn, n ∈ N) are the
eigenvalues of Q and (en, n ∈ N) are the corresponding normalised eigenvectors, we
have the useful representation of BQ as an L2-convergent series:

BQ(t) =
∞∑

n=1

√
λnβn(t)en, (5)

for each t ≥ 0, where (βn, n ∈ N) are independent standard real-valued Brownian
motions.

In the sequel, a Lévy process with characteristics (ζ,Q, 0) will be called a Q-Brownian
motion with drift, while a Lévy process with characteristics (ζ, 0, ν) will be said to be
non-Gaussian.

Example 2 (α-Stable Lévy Processes)

A Lévy process is said to be stable if pt is a stable law for each t ≥ 0, i.e. for all
a, b > 0, there exists φ ∈ H and c > 0 such that

(τapt) ∗ (τbpt) = δφ ∗ (τcpt),

where for any measure q on H, (τaq)(E) = q(a−1E), for all E ∈ B(H).
By a theorem of Jajte [17], a Lévy process X is stable iff it is a Q-Brownian motion
with drift or it is non-Gaussian and there exists 0 < α < 2 such that τcν = cαν, for
all c > 0. We call this latter case an α-stable Lévy process. An extensive account of
stable distributions in Hilbert and Banach spaces can be found in Chapters 6 and 7
of [26].

From now on we will always assume that Lévy processes have strongly càdlàg paths.
We also strengthen the independent increments requirement on X by assuming that
X(t)−X(s) is independent of Fs for all 0 ≤ s < t < ∞.
If X is a Lévy process, we write ∆X(t) = X(t) − X(t−), for all t > 0. We obtain a
Poisson random measure N on R+ × (H − {0}) by the prescription:

N(t, E) = #{0 ≤ s ≤ t; ∆X(s) ∈ E},
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for each t ≥ 0, E ∈ B(H−{0}). The associated compensated Poisson random measure
Ñ is defined by

Ñ(dt, dx) = N(dt, dx)− dtν(dx).

Let A ∈ B(H − {0}) with 0 /∈ A. If f : A → H is measurable, we may define
∫

A

f(x)N(t, dx) =
∑

0≤s≤t

f(∆X(s))1A(∆X(s))

as a random finite sum. Let νA denote the restriction of the measure ν to A, so that
νA is finite. If f ∈ L2(A, νA; H), we define

∫

A

f(x)Ñ(t, dx) =

∫

A

f(x)N(t, dx)− t

∫

A

f(x)ν(dx),

then by standard arguments (see e.g. [2], Chapter 2) we see that (
∫

A
f(x)Ñ(t, dx), t ≥

0) is a centred square-integrable martingale with

E

(∣∣∣∣
∣∣∣∣
∫

A

f(x)Ñ(t, dx)

∣∣∣∣
∣∣∣∣
2
)

= t

∫

A

||f(x)||2ν(dx), (6)

for each t ≥ 0 (see also theorem 3.2.5 in [1]).
The Lévy-Itô decomposition for a càdlàg Lévy process taking values in a separable
type 2 Banach space is established in [1]. We only need the Hilbert space version here:

Theorem 1. [1] If H is a separable Hilbert space and X = (X(t), t ≥ 0) is a càdlàg H-
valued Lévy process with characteristic exponent given by (4), then for each t ≥ 0,

X(t) = tζ + BQ(t) +

∫

||x||<1

xÑ(t, dx) +

∫

||x||≥1

xN(t, dx), (7)

where BQ is a Brownian motion which is independent of N .

In (7),
∫

||x||<1

xÑ(t, dx) = lim
n→∞

∫
1
n

<||x||<1

xÑ(t, dx),

where the limit is taken in the L2-sense, and it is a square-integrable martingale.
Let S = {x ∈ H; ||x|| < 1} and take Σ to be its Borel σ-algebra, then it is easy to
check that M is a martingale valued measure on R+ × S, where

M(t, A) = BQ(t)δ0(A) +

∫

A−{0}
xÑ(t, dx), (8)

for each t ≥ 0, A ∈ A. We call M a Lévy martingale-valued measure.
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Here we take A = A0 ∪{0}, where A0 = {A ∈ Σ; 0 /∈ A} and each Sn = {x ∈ S : 1
n

<
||x|| < 1}.
We now aim to show that M is nuclear. To this end, we introduce the family of linear
operators (FA, A ∈ A0) on H given by

FAy =

∫

A

(x, y)Hxν(dx),

so that each FA is a continuous superposition of finite-rank operators (using the Dirac
notation employed in physics, we would write “FA =

∫
A
(|x〉〈x|)ν(dx)”).

It is easy to see that each ||FA|| ≤
∫

A
||x||2ν(dx) < ∞, hence FA is bounded. Straight-

forward manipulations show that FA is positive, self-adjoint. FA is also trace class. To
see this, let (en, n ∈ N) be a maximal orthonormal set in H, then

tr(FA) =
∞∑

n=1

(en, FAen)H

=
∞∑

n=1

∫

A

(x, en)2
Hν(dx)

=

∫

A

||x||2ν(dx) < ∞.

Theorem 2. If M is a Lévy martingale-valued measure of the form (8), then M is
nuclear with ρ being Lebesgue measure on R+ and

TA = Qδ0(A) + FA−{0}, (9)

for all A ∈ A.

The proof follows easily from the above calculations and (6).

It is straightforward to deduce that (TA, A ∈ A) is decomposable, wherein λ = ν + δ0

and

T (x) =

{
Q if x = 0

(x, ·)Hx if x 6= 0.

3 Stochastic Integration

3.1 Weak Stochastic Integration

Let M be a martingale-valued measure. Fix T > 0. We denote by HM
2 (T ; S) the space

of all P ⊗Σ-measurable mappings F : [0, T ]× S ×Ω → H for which

E
(∫ T

0

∫

S

||F (s, x)||2〈M〉(ds, dx)

)
< ∞.
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Then HM
2 (T ; S) is a real Hilbert space. S(T ; S) is the subspace of all F ∈ HM

2 (T ; S)
for which

F =

N1∑
i=0

N2∑
j=0

Fij1(ti,ti+1]1Aj
,

where N1, N2 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T, A0, . . . , AN2 are disjoint sets
in A and each Fij is a bounded Fti-measurable random variable. S(T ; S) is dense
in HM

2 (T ; S) (see e.g. [2], section 4.1). We generalise the construction of stochastic
integrals with respect to martingales as developed in [24]. For each F ∈ S(T ; S), 0 ≤
t ≤ T , define

It(F ) =

N1∑
i=0

N2∑
j=0

(Fij,M((t ∧ ti, t ∧ ti+1], Aj))H .

Then

E(|It(F )|2)

=

N1∑
i=0

N2∑
j=0

N1∑

k=0

N2∑

l=0

E[(Fij,M((t ∧ ti, t ∧ ti+1], Aj))H(Fkl,M((t ∧ tk, t ∧ tk+1], Al))H ]

=

N1∑
i=0

N2∑
j=0

E[|(Fij,M((t ∧ ti, t ∧ ti+1], Aj))H |2]

≤
N1∑
i=0

N2∑
j=0

E[||Fij||2.||M((t ∧ ti, t ∧ ti+1], Aj)||2]

= E

[
N1∑
i=0

N2∑
j=0

||Fij||2(〈M〉((t ∧ ti, t ∧ ti+1], Aj)

]

= E
[∫ t

0

∫

S

||F (s, x)||2〈M〉(ds, dx)

]
.

Hence It extends to a contraction from HM
2 (T ; S) to L2(Ω,F , P ). For each 0 ≤ t ≤

T, F ∈ HM
2 (T ; S), ∫ t

0

∫

S

(F (s, x),M(ds, dx))H := It(F ).

By standard arguments, we see that (It(T ); 0 ≤ t ≤ T ) is a centred square-integrable
real-valued martingale with

E(|It(F )|2 ≤ E
[∫ t

0

∫

S

||F (s, x)||2〈M〉(ds, dx)

]
,

for all 0 ≤ s ≤ T, F ∈ HM
2 (T ; S).
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3.2 Strong Stochastic Integration

In the section we will take the martingale-valued measure M to be nuclear and de-
composable. Let (R(t, x), t ∈ [0, T ], x ∈ S) be a family of bounded linear operators
on H. We say that they are predictable if the mappings [0, T ] × S → H, given by
(t, x) → R(t, x)ψ are P ⊗ Σ-measurable, for each ψ ∈ H. Our aim is to define∫ t

0

∫
S

R(s, x)M(ds, dx) as random vectors, for each t ≥ 0. We follow the approach
given in section 4.2 of [11] for the case of Brownian motion (see also [28], section
4.22). Let H2(T ; λ, ρ) be the real Hilbert space of all predictable R for which

E
(∫ T

0

∫

S

tr(R(t, x)TxR(t, x)∗)λ(dx)ρ(dt)

)
< ∞. (10)

We denote by S(T ; λ, ρ) the dense linear space of all R ∈ H2(T ; λ, ρ), which take the
form

R =

N1∑
i=0

N2∑
j=0

Rij1(ti,ti+1]1Aj
,

where N1, N2 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T, A0, . . . , AN2 are disjoint sets in A
and each Rij is a bounded operator valued Fti-measurable random variable. For each
R ∈ S(T ; λ, ρ), 0 ≤ t ≤ T , define

Jt(R) =

N1∑
i=0

N2∑
j=0

RijM((t ∧ ti, t ∧ ti+1], Aj).

Let (en, n ∈ N) be a maximal orthonormal set in H. We compute

E(Jt(R)) =
∞∑

n=1

N1∑
i=0

N2∑
j=0

E((R∗
ijen,M((t ∧ ti, t ∧ ti+1], Aj))H)en

=
∞∑

n=1

∞∑
m=1

N1∑
i=0

N2∑
j=0

E((R∗
ijen, em)H(em,M((t ∧ ti, t ∧ ti+1], Aj))H)en

= 0.

Similar arguments yield

E(||Jt(R)||2) =

N1∑
i=0

N2∑
j=0

E(||RijM((t ∧ ti, t ∧ ti+1], Aj)||2)

=
∞∑

n=1

N1∑
i=0

N2∑
j=0

E(|(RijM((t ∧ ti, t ∧ ti+1], Aj), en)H |2)
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=
∞∑

n=1

N1∑
i=0

N2∑
j=0

E((R∗
ijen, TAj

R∗
ijen)H)ρ((ti ∧ t, ti+1 ∧ t])

=

N1∑
i=0

N2∑
j=0

E(tr(RijTAj
R∗

ij))ρ((ti ∧ t, ti+1 ∧ t])

=

N1∑
i=0

N2∑
j=0

E

(∫

Aj

tr(RijTxR
∗
ij)λ(dx)

)
ρ((ti ∧ t, ti+1 ∧ t])

Hence each Jt extends to an isometry from H2(T ; λ, ρ) into L2(Ω,F , P ; H) and we

write
∫ t

0

∫
S

R(s, x)M(ds, dx) := Jt(R), for each 0 ≤ t ≤ T, R ∈ H2(T ; λ, ρ). The
process (Jt, t ≥ 0) is a square-integrable centred martingale. Henceforth we will always
take a strongly càdlàg version.

Notes 1). The condition (10) can be rewritten as

E
(∫ T

0

∫

S

||R(t, x)T
1
2

x ||2λ(dx)ρ(dt)

)
< ∞,

where || · ||2 is the Hilbert-Schmidt norm, i.e. ||C||2 = tr(CC∗) for C ∈ L(H). The
set of all C ∈ L(H) for which ||C||2 < ∞ is a Hilbert space with respect to the inner
product (C,D)2 = tr(CD∗), which we denote as L2(H), (see e.g. [34], section VI.6 for
further details).

2) L2(H) is a two-sided L(H)-ideal with ||C1DC2||2 ≤ ||C1||.||C2||.||D||2, for all
C1, C2 ∈ L(H), D ∈ L2(H). From this we easily deduce that

∫ T

0

∫

S

E(||R(t, x)||2)tr(Tx)λ(dx)ρ(dt) < ∞ (11)

is a sufficient condition for (10).

3) The construction of this section is easily extended to the conceptually simpler
case of deterministic operator-valued families (R(t, x), t ∈ [0, T ], x ∈ S) satisfying∫ T

0

∫
S

tr(R(t, x)TxR(t, x)∗)λ(dx)ρ(dt) < ∞.

If C ∈ L(H) and R = (R(t, x), t ∈ [0, T ], x ∈ S), we define CR = (CR(t, x), t ∈
[0, T ], x ∈ S). We will need the following result in section 4.3 below.

Theorem 3. If C ∈ L(H) and R ∈ H2(T ; λ, ρ) then CR ∈ H2(T ; λ, ρ) and

C

∫ t

0

∫

S

R(s, x)M(ds, dx) =

∫ t

0

∫

S

CR(s, x)M(ds, dx),

for all t ≥ 0.
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Proof. CR ∈ H2(T ; λ, ρ) follows easily from Note 2 above. The identity is immediate if
R ∈ S(T ; λ, ρ). More generally, let (Rn, n ∈ N) be a sequence in S(T ; λ, ρ) converging
to R ∈ H2(T ; λ, ρ), then for all t ≥ 0,

E

(∣∣∣∣
∫ t

0

∫

S

CR(s, x)M(ds, dx)−
∫ t

0

∫

S

CRn(s, x)M(ds, dx)

∣∣∣∣
2
)

= E

(∣∣∣∣
∫ t

0

∫

S

C[R(s, x)−Rn(s, x)]M(ds, dx)

∣∣∣∣
2
)

= E
(∫ t

0

∫

S

tr(C[R(s, x)−Rn(s, x)]Fx[R(s, x)∗ −Rn(s, x)∗C∗])λ(dx)ρ(dt)

)

≤ ||C||2E
(∫ t

0

∫

S

tr([R(s, x)−Rn(s, x)]Fx[R(s, x)∗ −Rn(s, x)∗])λ(dx)ρ(dt)

)

→ 0 as n →∞,

and the result follows. ¤

3.3 Weak-Strong Compatibility

In this subsection we will assume that the operator-valued family (R(t, x), t ∈
[0, T ], x ∈ S) is such that the mappings [0, T ] × S → H, given by (t, x) → R(t, x)∗ψ
are P ⊗Σ-measurable, for each ψ ∈ H.

Theorem 4. If M is a decomposable nuclear martingale-valued measure with inde-
pendent increments and the operator-valued family (R(t, x), t ∈ [0, T ], x ∈ S) satisfies
(11) then for all 0 ≤ t ≤ T, ψ ∈ H

(
ψ,

∫ t

0

∫

S

R(s, x)M(ds, dx)

)

H

=

∫ t

0

∫

S

(R(s, x)∗ψ,M(ds, dx))H . (12)

Proof. First note that since (11) holds, the strong integral appearing on the left hand
side of (12) exists. The weak integral on the right hand side also exists, since by the
independent increments property of M , proposition 2.1 and (11),

E
(∫ T

0

∫

S

||R(s, x)∗ψ||2〈M〉(ds, dx)

)
=

∫ T

0

∫

S

E(||R(s, x)∗ψ||2)E(〈M〉(ds, dx))

≤
∫ T

0

∫

S

E(||R(s, x)||2)tr(Tx)λ(dx)ρ(ds)||ψ||2

<∞.

To establish the result, first let R ∈ S(T ; λ, ρ), then
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(
ψ,

∫ t

0

∫

S

R(s, x)M(ds, dx)

)

H

=

N1∑
i=0

N2∑
j=0

(ψ, RijM((ti, ti+1], Aj))H

=

N1∑
i=0

N2∑
j=0

(R∗
ijψ, M((ti, ti+1], Aj))H

=

∫ t

0

∫

S

(R(s, x)∗ψ, M(ds, dx))H .

The general result follows by a straightforward limiting argument. ¤

3.4 A Stochastic Fubini Theorem

The result to be established is in some respects quite simple, however it is adequate
for our later needs. Let N be a Poisson random measure defined on R+ × (H − {0})
as in section 1.3 and let ν be its intensity measure, which we will assume to
be a Lévy measure. Let E ∈ B(H − {0}). If F : R+ × H → R is P ⊗ E-

measurable and
∫ t

0

∫
E
E(|F (s, x)|2)ν(dx)ds < ∞, we can construct the stochastic in-

tegral
∫ t

0

∫
E

F (s, x)Ñ(ds, dx). It is a centred square-integrable martingale with

E

(∣∣∣∣
∫ t

0

∫

E

F (s, x)Ñ(ds, dx)

∣∣∣∣
2
)

=

∫ t

0

∫

E

E(|F (s, x)|2)ν(dx)ds,

see e.g. Chapter 4 of [2].
Now let (W,W , µ) be a finite measure space and let H2(T, E,W ) be the real Hilbert
space of all P ⊗ B(E) ⊗ W-measurable functions G from [0, T ] × E × W → R for

which
∫

W

∫ t

0

∫
E
E(|G(s, x, w)|2)ν(dx)dsµ(dw) < ∞. The space S(T, E, W ) is dense in

H2(T, E, W ), where G ∈ S(T, E, W ) if

G =

N1∑
i=0

N2∑
j=0

N3∑

k=0

Gijk1(ti,ti+1]1Aj
1Bk

,

where N1, N2, N3 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T, A0, . . . , AN2 are disjoint sets in
A, B0, . . . , BN3 is a partition of W , wherein each Bk ∈ W and each Gijk is a bounded
Fti-measurable random variable.

Theorem 5. If G ∈ H2(T, E, W ), then for each 0 ≤ t ≤ T ,
∫

W

(∫ t

0

∫

E

G(s, x, w)Ñ(ds, dx)

)
µ(dy) =

∫ t

0

∫

E

(∫

W

G(s, x, w)µ(dy)

)
Ñ(ds, dx) a.e.

(13)

Proof. First note that both integrals in (13) are easily seen to exist in L2(Ω,F , P ). If
G ∈ S(T, E, W ), then the result holds with both sides of (13) equal to
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N1∑
i=0

N2∑
j=0

N3∑

k=0

GijkÑ((ti, ti+1], Aj)µ(Bk).

Now suppose that (Gn, n ∈ N) is a sequence of mappings in S(T, E, W ) converging to
G ∈ H2(T, E, W ), then

E

(∣∣∣∣
∫ t

0

∫

E

(∫

W

[G(s, x, w)−Gn(s, x, w)]µ(dw)

)
Ñ(ds, dx)

∣∣∣∣
2
)

=

∫ t

0

∫

E

E

(∣∣∣∣
∫

W

[G(s, x, w)−Gn(s, x, w)]µ(dw)

∣∣∣∣
2
)

ν(dx)ds

≤ µ(W )

∫ t

0

∫

E

∫

W

E(|G(s, x, w)−Gn(s, x, w)|2)µ(dw)ν(dx)ds

→ 0 as n →∞.

A similar argument shows that

lim
n→∞

E

(∣∣∣∣
∫

W

(∫ t

0

∫

E

[Gn(s, x, w)−G(s, x, w)]Ñ(ds, dx)

)
µ(dy)

∣∣∣∣
2
)

= 0,

and the result follows. ¤

4 Ornstein-Uhlenbeck Processes

4.1 Stochastic Convolution

Let X be a strongly càdlàg Lévy process and let (S(t), t ≥ 0) be a C0-semigroup
(i.e. a strongly continuous one-parameter semigroup of linear operators ) acting in H.
Basic facts about such semigroups can be found in e.g. Chapter 1 of [14]. We note in
particular that there exists M > 1, β ∈ R such that

||S(t)|| ≤ Meβt, (14)

for all t ≥ 0. J will denote the infinitesimal generator of (S(t), t ≥ 0). It is a closed,
densely defined linear operator in H and hence its adjoint J∗ is also densely defined.
Let C ∈ L(H). Our aim in this subsection is to define the stochastic convolution

XJ,C(t) :=

∫ t

0

S(t− s)CdX(s), (15)

for all t ≥ 0. We do this by employing the Lévy-Itô decomposition (7) to write each
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XJ,C(t) =

∫ t

0

S(t− s)Cζds +

∫ t

0

S(t− s)CdBQ(s) +

∫ t

0

∫

||x||<1

S(t− s)CxÑ(ds, dx)

+

∫ t

0

∫

||x|≥1

S(t− s)CxN(ds, dx). (16)

We need to establish condition under which the process (XJ,C(t), t ≥ 0) exists. To do

this we consider each term in (16) in turn. We define
∫ t

0
S(t − s)Cζds as a standard

Bochner integral. Indeed using (14) we obtain

∣∣∣∣
∣∣∣∣
∫ t

0

S(t− s)Cζds

∣∣∣∣
∣∣∣∣ ≤

(∫ t

0

||S(t− s)||ds

)
||Cζ||

≤
{

Mβ−1(eβt − 1)||Cζ|| if β 6= 0
Mt||Cζ|| if β = 0.

The terms
∫ t

0
S(t−s)CdBQ(s) and

∫ t

0

∫
||x||<1

S(t−s)CxÑ(ds, dx) are dealt with using

the (deterministic version) of strong stochastic integration as described in section 3.2.
In fact the first of these terms was discussed in [11], section 5.1.2. (see also [7]). Using

the estimate (11) we find that
∫ t

0
S(t− s)CdBQ(s) exists as a strong integral provided(∫ t

0
||S(t− s)||2ds

)
tr(Q) < ∞, which by (14) is always satisfied.

Note. [11] impose the weaker condition (10) as they want to explore the degenerate
case where Q = I. This falls outside the context of the current work as BQ is not then
a Lévy process when H is infinite dimensional.

Again using (11) for the compensated Poisson integral, we must estimate

∫ t

0

||S(t− s)||2ds

∫

||x||<1

tr(Tx)ν(dx) =

∫ t

0

||S(t− s)||2ds

∫

||x||<1

||x||2ν(dx)

<∞
Hence we see that

∫ t

0

∫
||x||<1

S(t− s)CxÑ(ds, dx) also always exists.

Finally, we may define the final Poisson integral as a finite (random) sum:

∫ t

0

∫

||x|≥1

S(t− s)CxN(ds, dx) =
∑

0≤s≤t

S(t− s)C∆X(s)1{||x||≥1}(∆X(s)).

In conclusion, we have established the following:

Theorem 6. If X is a càdlàg Lévy process, C ∈ B(H) and (S(t), t ≥ 0) is a C0-

semigroup with generator J , the stochastic convolution XJ,C(t) =
∫ t

0
S(t − s)CdX(s)

exists in H for all t ≥ 0.
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We note that the process XJ,C = (XJ,C(t), t ≥ 0) inherits strongly càdlàg paths from
X.

Note. An alternative approach to defining the stochastic convolution is to employ
(weak) integration by parts to write, for each ψ ∈ Dom(J∗),

(ψ, XJ,C(t))H = (ψ, [S(0)CX(t)− S(t)CX(0)])H +

∫ t

0

(C∗J∗ψ, S(t− s)X(s−))Hds.

Another approach, using convergence in probability rather than L2-convergence can
be found in [9].

4.2 Existence and Uniqueness for Ornstein-Uhlenbeck Processes

The development of this section closely parallels that of [11], section 5.2. We consider
the generalised Langevin equation in Hilbert space, i.e

dY (t) = JY (t)dt + CdX(t), (17)

with the initial condition Y (0) = Y0 (a.s.), where Y0 is a given F0-measurable random
variable. We consider (17) as a weak sense stochastic differential equation. By this we
mean that Y = (Y (t), t ≥ 0) is a solution to (17) if for all t ≥ 0, ψ ∈ Dom(J∗),

(ψ, Y (t)− Y0)H = (C∗ψ, X(t))H +

∫ t

0

(J∗ψ, Y (s))Hds. (18)

Our candidate solution to (17) is given by the usual stochastic version of the variation
of constants formula

Z(t) = S(t)Y0 +

∫ t

0

S(t− s)CdX(s), (19)

for each t ≥ 0. It follows from Theorem 6 that Z(t) exists for all t ≥ 0.

Note. Da Prato and Zabczyk [11] consider (18) in the case where X is a Brownian
motion. In their formalism, the operators J and the process X are associated to
different Hilbert spaces H1 and H2, respectively and C maps H2 to H1. Our approach
herein is easily extended to this level of generality (in fact one can just take H =
H1 ⊕H2).

Theorem 7. (19) is the unique weak solution to (18).

Proof. We extend the argument used to prove theorem 5.4 in [11]. See [9] for an
alternative approach.

Existence. First note that if XJ,C solves (18) with the initial condition Y0 = 0 (a.s.),
then it is clear that Z, as given by (19) solves (18) with the arbitrary initial condition.
Hence we may restrict ourselves to the former problem.
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For each t ≥ 0, ψ ∈ Dom(J∗), using (12) we obtain

(ψ, XJ,C(t))H − (C∗ψ,X(t))H) =

(
ψ,

∫ t

0

[S(t− s)− I]CdX(s)

)

H

=

∫ t

0

(C∗[S(t− s)∗ − I]ψ, dX(s))H

=

∫ t

0

(∫ t−s

0

C∗S(r)∗J∗drψ, dX(s)

)

H

=

∫ t

0

(∫ t

s

1[0,r)(s)C
∗S(r − s)∗J∗drψ, dX(s)

)

H

We now need to change the order of integration. Using (16), we employ (13) for the
compensated Poisson integral, the stochastic Fubini theorem of [11] (theorem 4.18)
for the Brownian integral and the usual Fubini theorem for the Lebesgue integral to
deduce that

(ψ, XJ,C(t))H − (C∗ψ,X(t))H) =

∫ t

0

(
J∗ψ,

∫ t

0

1[0,r)(s)S(r − s)CdX(s)

)

H

=

∫ t

0

(J∗ψ,XJ,C(r))Hdr,

as was required.

Uniqueness. This is established in exactly the same way as in [11] (pp. 122-3). ¤
It follows immediately from (19) that Y has strongly càdlàg paths.

Example Let H = L2(U) where U is a regular domain in Rd. If ∆ denotes the usual
(Dirichlet) Laplacian acting in H then for each 0 < α < 2, we can define the fractional
power −(−∆

α
2 ) by e.g. spectral theory, or as a pseudo-differential operator. Indeed

when U = Rd, −(−∆
α
2 ) is a positive self-adjoint operator on the domain Hα(Rd) ={

f ∈ L2(Rd);
∫
Rd |v|2α|f̂(v)|2dv < ∞

}
, where f̂ denotes the Fourier transform of f ,

and−(−∆
α
2 ) generates a self-adjoint contraction semigroup on H (see e.g. [2], Chapter

3). By the results of this section we know there is a unique weak solution to the
equation

dY (t) = −(−∆
α
2 )Y (t)dt + CdX(t),

for any C ∈ B(H) and any Lévy process X. In particular, one can take X to be
α-stable (c.f. [30]).

4.3 Flow and Markov Properties

For each 0 ≤ s ≤ t < ∞, define a two-parameter family of mappings Φs,t : H×Ω → H
by
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Φs,t(y) = S(t− s)y +

∫ t

s

S(t− r)CdX(r).

The following establishes that {Φs,t; 0 ≤ s ≤ t < ∞} is a stochastic flow.

Proposition 4.1 For all 0 ≤ r ≤ s ≤ t < ∞,

Φs,t ◦ Φr,s = Φr,t

Using the semigroup property and Theorem 3, for each y ∈ H, we obtain

Φs,t(Φr,s(y)) = S(t− s)Φr,s(y) +

∫ t

s

S(t− u)CdX(u)

= S(t− s)S(s− r)y + S(t− s)

∫ s

r

S(s− u)CdX(u) +

∫ t

s

S(t− u)CdX(u)

= S(t− r)y +

∫ s

r

S(t− u)CdX(u) +

∫ t

s

S(t− u)CdX(u)

= Φr,t(y). ¤

By the construction of stochastic integrals, we deduce that each Φs,t(y) is Gs,t-
measurable where Gs,t = σ{X(u) − X(v); s ≤ u < v ≤ t}, and hence by the in-
dependent increment property of X, it follows that Φs,t(y) is independent of Fs.
From this fact and Proposition 4.1, we can apply standard arguments (see e.g [2],
section 6.4 or [33], section 5.6) to establish the strong Markov property for the solution
to (18), i.e. if τ is a stopping time with P (τ < ∞) = 1 then for each f ∈ b(H), t ≥ 0

E(f(Y (τ + t))|Fτ ) = E(f(Y (τ + t))|Y (τ)),

where Fτ is the usual stopped σ-algebra.
By the stationary increments of X it follows that Y is a time-homogeneous Markov
process and hence we obtain a contraction semigroup of linear operators (Tt, t ≥ 0)
on b(H) via the prescription

(Ttf)(y) = E(f(Y (t))|Y (0) = y),

for each t ≥ 0, f ∈ b(H), y ∈ H. We easily verify that Tt : Cb(H) ⊆ Cb(H) for each
t ≥ 0, by a routine application of dominated convergence. In fact (Tt, t ≥ 0) is a
generalised Mehler semigroup in the sense of [6], [15].

5 Operator Self-decomposability

Generalising ideas developed in [21], we say that a random variable Z is operator
self-decomposable with respect to a C0-semigroup (S(t), t ≥ 0) if for all t ≥ 0, there
exists a random variable Zt which is independent of Z, such that
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Z
d
= S(t)Z + Zt. (20)

We aim to show that random variables of the form Z =
∫∞
0

S(r)dX(r), where X is
a Lévy process are operator self-decomposable, when the limit makes sense. For each
t ≥ 0, we define

∫ t

0
S(r)dX(r) by employing the Lévy-Itô decomposition, as in (16).

We assume throughout this section that the semigroup (S(t), t ≥ 0) is exponentially
stable, i.e. (14) holds with β < 0, e.g. all self-adjoint semigroups whose generator
has a spectrum which is bounded away from zero are exponentially stable. In [12],
it is shown that a C0-semigroup (S(t), t ≥ 0) is exponentially stable if and only if∫∞

0
||S(t)x||2dt < ∞, for all x ∈ H.

Under this assumption, given any sequence (tn, n ∈ N) in [0,∞) with limn→∞ tn = ∞,
we can assert the existence of the following limits:

∫ ∞

0

S(r)ζdr = lim
n→∞

∫ tn

0

S(r)ζdr

∫ ∞

0

S(r)dBQ(r) = lim
n→∞

∫ tn

0

S(r)dBQ(r)

∫ ∞

0

∫

||x||<1

S(r)xÑ(dr, dx) = lim
n→∞

∫ tn

0

∫

||x||<1

S(r)xÑ(dr, dx),

where the first limit is taken in H and the other two in L2(Ω,F , P ; H). We
need to work harder to consider the limiting behaviour as t → ∞ of ΠS,N(t) :=∫ t

0

∫
||x||≥1

S(r)xN(dr, dx).

Lemma 1. Let A ∈ L(H) with ||A|| ≤ 1 and (ξn, n ∈ N) be a sequence of iid random
variables. If E(log(1 + ||ξ1||)) < ∞, then

∑∞
n=1 Anξn converges a.s.

The proof is exactly as in [21], lemma 3.6.5 (p.121). Note that these authors are able
to prove ‘if and only if’ by assuming that A is invertible. That assumption would be
unnatural in our context.
This next result is related to Proposition 1.8.13 in [21], p.36, although the proof is
quite different.

Lemma 2. Let f : H → R+ be measurable and subadditive. If
∫ t

0

∫
||x||≥1

f(S(r)x)ν(dx)dr <

∞ then E(f(ΠS,N(t))) < ∞, for each t ≥ 0.

Proof. By subadditivity of f , for each t ≥ 0 we have

f(ΠS,N(t)) = f

( ∑
0≤r≤t

S(r)∆X(r)1{||x||≥1}(∆X(r))

)

≤
∑

0≤r≤t

f(S(r)∆X(r))1{||x||≥1}(∆X(r))

=

∫ t

0

∫

||x||≥1

f(S(r)x)N(dr, dx).
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Hence

E(f(ΠS,N(t))) ≤ E
(∫ t

0

∫

||x||≥1

f(S(r)x)N(dr, dx)

)

=

∫ t

0

∫

||x||≥1

f(S(r)x)ν(dx)dr < ∞. ¤

Theorem 8. (c.f. [39], [22], [21]) Let (S(t), t ≥ 0) be an exponentially stable contrac-

tion semigroup in H. If
∫
||x||≥1

log(1+||x||)ν(dx) < ∞ then limt→∞
∫ t

0

∫
||x||<1

S(r)xN(dr, dx)

exists in distribution.

Proof. We follow the approach of [21], theorem 3.6.6 (p.123). By stationary increments
of X and the semigroup property, for each n ∈ N,

∫ n

0

∫

||x|≥1

S(r)xN(dr, dx) =
n−1∑

k=0

∫ k+1

k

∫

||x||≥1

S(r)xN(dr, dx)

=
n−1∑

k=0

∫ 1

0

∫

||x||≥1

S(r + k)xN(dr + k, dx)

=
n−1∑

k=0

S(1)k

∫ 1

0

∫

||x||≥1

S(r)xN(dr + k, dx)

d
=

n−1∑

k=0

S(1)k

∫ 1

0

∫

||x||≥1

S(r)xN(dr, dx)

d
=

n−1∑

k=0

S(1)kMk,

where each Mk :=
∫ k+1

k

∫
||x||≥1

S(r − k)xN(dr, dx). The Mk’s are independent by the

independent increment property of N . Moreover by the stationary increment property
of N , each

Mk =

∫ 1

0

∫

||x||≥1

S(r)xN(dr + k, dx)
d
=

∫ 1

0

∫

||x||≥1

S(r)xN(dr, dx).

We deduce the convergence in distribution as n →∞ of
∫ n

0
S(r)xN(dr, dx) by lemmas

1 and 2 together with the estimate
∫ t

0

∫

||x||≥1

log(1 + ||S(r)x||)ν(dx)dr ≤
∫ t

0

∫

||x||≥1

log(1 + ||x||)ν(dx)dr

= t

∫

||x||≥1

log(1 + ||x||)ν(dx).
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Now let (sn, n ∈ N) be an arbitrary sequence in [0, 1]. By stationary increments of N ,
for each n ∈ N,

∫ n+sn

n

∫

||x||≥1

S(r)xN(dr, dx)
d
= S(n)

∫ sn

0

∫

||x||≥1

S(r)xN(dr, dx).

Since t → ∫ t

0
S(r)xN(dr, dx) is a.s. càdlàg, we deduce that

∣∣∣∣
∣∣∣∣S(n)

∫ sn

0

∫

||x||≥1

S(r)xN(dr, dx)

∣∣∣∣
∣∣∣∣ ≤ ||S(n)|| sup

t∈[0,1]

∣∣∣∣
∣∣∣∣
∫ t

0

S(r)

∫

||x||≥1

xN(dr, dx)

∣∣∣∣
∣∣∣∣

→ 0 as n →∞ a.s.

Hence, given any sequence (tn, n ∈ N) diverging to ∞, we can deduce the convergence
in distribution as tn →∞ of
∫ tn

0

S(r)

∫

||x||≥1

xN(dr, dx) =

∫ [tn]

0

∫

||x||≥1

S(r)xN(dr, dx)+

∫ tn

[tn]

∫

||x|≥1

S(r)xN(dr, dx).¤

Note. In [9] it is shown that the following conditions are necessary and sufficient for

the existence (in distribution) of limt→∞
∫ t

0
S(r)dK(r) where K is the jump part of

X, i.e. K(t) = X(t)− tζ −BQ(t), for each t ≥ 0:
∫ ∞

0

∫

H−{0}
(||S(r)x||2 ∧ 1)ν(dx)dr < ∞

lim
t→∞

∫ t

0

∫

H−{0}
S(r)x[1B1(S(r)(x))− 1B1(x)]ν(dx)ds exists . (21)

These may be difficult to verify in practice.

The main result of this section is the following:

Theorem 9. If (S(t), t ≥ 0) is an exponentially stable contraction semigroup in H and
X is a Lévy process with Lévy measure ν for which

∫
||x||≥1

log(1 + ||x||)ν(dx) < ∞,

then limt→∞
∫ t

0
S(r)dX(r) exists in distribution and is operator self-decomposable with

respect to (S(t), t ≥ 0).

Proof. It follows from the Lévy-Itô decomposition that
∫ t

0
S(r)dX(r) − ΠS,N(t) and

ΠS,N(t) are independent. Since each of these terms converges in distribution as t →
∞, it follows that their sum also does. For the self-decomposability, we define Z =∫∞

0
S(r)dX(r), then

Z =

∫ t

0

S(r)dX(r) +

∫ ∞

t

S(r)dX(r),

and these terms are independent, by the independent increment property of X. Now
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∫ ∞

t

S(r)dX(r) =

∫ ∞

0

S(r + t)dX(r + t)
d
= S(t)

∫ ∞

0

S(r)dX(r),

by the stationary increment property of X. Hence we have (20) with Zt =
∫ t

0
S(r)dX(r).¤

Finally, there is an interesting link between self-decomposability and Ornstein-Uhlenbeck
processes (c.f. [39], [4] for the finite-dimensional case).
Suppose that X is a Lévy process with characteristics (ζ, Q, ν), and define the process
X̃ = (−X(t), t ≥ 0), then X̃ is a Lévy process with characteristics (−ζ, Q, ν̃), where
ν̃(A) = ν(−A), for all A ∈ B(H −{0}). In the following, we define (X(t), t < 0) to be
an independent copy of X̃.
We recall the Ornstein-Uhlenbeck process (19)

Y (t) = S(t)Y0 +

∫ t

0

S(t− s)dX(s),

for each t ≥ 0, where we have taken C = I.

Theorem 10. If the Ornstein-Uhlenbeck process (Y (t), t ≥ 0) is stationary, then Y0

is self-decomposable. Conversely, if (S(t), t ≥ 0) is an exponentially stable contrac-
tion semigroup in H and

∫
||x||≥1

log(1 + ||x||)ν(dx) < ∞, then there exists a self-

decomposable Y0 such that Y = (Y (t), t ≥ 0) is stationary.

Proof. Suppose that Y = (Y (t), t ≥ 0) is stationary, then for each t ≥ 0,

Y0
d
= Y (t) = S(t)Y0 +

∫ t

0

S(t− r)dX(r),

so Y0 is self-decomposable. Conversely, define Y0 :=
∫ 0

−∞ S(−r)dX(r), then Y0 is self-
decomposable by theorem 9. By theorem 3 and the semigroup property, for each t ≥ 0,
we have

Y (t) =

∫ 0

−∞
S(t− r)dX(r) +

∫ t

0

S(t− r)dX(r)

=

∫ t

−∞
S(t− r)dX(r).

Clearly Y (t + h)
d
= Y (t), for each h > 0. More generally, by stationary increments of

Z we can easily deduce (as in [2], theorem 4.3.16) that

E

(
exp

{
i

n∑
j=1

(uj, Y (tj + h))H

})
= E

(
exp

{
i

n∑
j=1

(uj, Y (tj))H

})
,

for each n ∈ N, u1, . . . , un ∈ H, t1, . . . , tn ∈ R+ ¤.
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Note. In [9], it is shown that the conditions (21) are necessary and sufficient for
Y to have a stationary solution and the condition

∫
||x||≥1

log(1 + ||x||)ν(dx) < ∞ is

demonstrated to be sufficient for these to hold. In [8] an example is constructed which
demonstrates that this condition is not necessary when H is infinite dimensional.
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to appear in Stoch. Anal. and Applns.
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