
MAS331: Metric Spaces
Problems on Chapter 1

1. In R3, find d1((3, 1, 4), (2, 7, 1)), d2((3, 1, 4), (2, 7, 1)) and d∞((3, 1, 4), (2, 7, 1)).

2. In R4, show that d1((4, 4, 4, 6), (0, 0, 0, 0)) = d1((3, 5, 5, 5), (0, 0, 0, 0)) and
d2((4, 4, 4, 6), (0, 0, 0, 0)) = d2((3, 5, 5, 5), (0, 0, 0, 0)).
Is d∞((4, 4, 4, 6), (0, 0, 0, 0)) = d∞((3, 5, 5, 5), (0, 0, 0, 0))?

3. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn.

(a) Show that d∞(a, b) 6 d2(a, b) 6 d1(a, b). (Hint: for the second
inequality, first show that d1(a, b)2 > d2(a, b)2.)

(b) Show that d1(a, b) 6 nd∞(a, b).

(c) It follows from (a) and (b) that d2(a, b) 6 nd∞(a, b). Do better than
this by showing that d2(a, b) 6

√
nd∞(a, b).

(d) When does d∞(a, b) = d2(a, b)? When does d2(a, b) = d1(a, b)?

(e) When does d1(a, b) = nd∞(a, b)? When does d2(a, b) =
√
nd∞(a, b)?

4. Prove that the taxicab metric d1 on Rn, given by

d1((a1, . . . , an), (b1, . . . , bn)) = |a1 − b1|+ · · ·+ |an − bn|,

is indeed a metric on R2.

5. Let r > 0 and let a = (a1, . . . , an) ∈ Rn. Use Problem 3 to show that

B1(a, r) ⊆ B2(a, r) ⊆ B∞(a, r)

and that

B∞(a,
r

n
) ⊆ B1(a, r) and B∞(a,

r√
n

) ⊆ B2(a, r).

Here, as in the notes, the subscripts indicate which metric we are using.

When n = 1, all the inclusions ⊆ are =. What can you say about them
when n > 1?

6. Let I = [0, 5]. In C(I), let f(x) = x2 − 4x and g(x) = 3x − 6. Find
d∞(f, g) and d1(f, g).

7. Let I = [0, 1]. In C(I) with the metric d∞, let f be the constant function
with value 0, i.e. f(x) = 0 for all x ∈ I. Describe the closed ball B[f, 1].

8. Let X be any non-empty set. Show that the discrete metric satisfies all
the axioms for a metric space.
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9. (Exercise 1.19) Let I = [a, b] and prove that d1 : C[a, b]× C[a, b]→ R,

d1(f, g) =

∫ b

a

|f(x)− g(x)|dx,

satisfies axioms M2 and M3.

10. There is a metric d on R2 such that, for a, b ∈ R2,

d(a, b) =

{
d2(a, b) if a, b and (0, 0) are collinear

d2(a, (0, 0)) + d2(b, (0, 0)) otherwise.

Thus d(a, b) is the usual distance between a and b if we only allow move-
ment along radii emanating from (0, 0). (You are not asked to show that d
is a metric. It is relevant in a country where all railway lines pass through
the capital or a city where all bus routes go by the city hall.)

(a) Find d((4, 2), (2, 1)) and d((4, 2), (−2, 3)).

(b) Sketch the open balls B((0,−1), 12 ) and B((0,−1), 2).

11. Prove that the function d defined by d(x, y) =
√
|x− y| (where x, y ∈ R)

is a metric on the set R.

Prove that the function d defined by d(x, y) = (x − y)2 (where x, y ∈ R)
is not a metric on the set R.

[Hint. To prove something is not a metric, you have only to show that one
of the axioms doesn’t hold, and to do this the best way is to give values
of the variables for which it is false.]

12. Let X be a non-empty set with two metrics d1 and d2. Define d : X×X →
R by

d(x, y) = d1(x, y) + d2(x, y) for all x, y ∈ X.

Show that d is a metric on X.

13. In R2, let d(x, y) = d1(x, y)− d2(x, y). Show that d is not a metric on R2.

14. For a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn) ∈ Rn, let

e(a, b) = max{|ai − bi|}+ min{|ai − bi|}.

(a) Show that if n = 2 then, for all a, b ∈ Rn, e(a, b) = d1(a, b), where d1
is the taxicab metric.

(b) By considering (0, 0, 0), (1, 2, 3) and (2, 2, 4), show that if n = 3 then
e is not a metric.
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MAS331: Metric Spaces
Problems on Chapter 2

1. Show that, in R, the sequence
√
n+ 1−

√
n− 1 converges to 0.

Hint : Think of
√
n+ 1 −

√
n− 1 as a fraction

√
n+1−

√
n−1

1 and multiply

top and bottom by
√
n+ 1 +

√
n− 1.

2. Show that ( n
n+1 ,

n+1
n ) → (1, 1) in the metric space (R2, d1), where d1 is

the “taxi-cab metric”.

3. This question concerns the metrics d1 and d∞ on Rm and uses the notation
B1(a, ε) and B∞(a, ε) to distinguish between open balls in the two metrics.
Let (an) be a sequence in Rm and let a ∈ Rm. From Problem 5 on Chapter
1, we know that, for all a ∈ Rm and all ε > 0,

B∞(a, ε/m) ⊆ B1(a, ε) ⊆ B∞(a, ε).

Use this to show that an → a under d1 if and only if an → a under
d∞. (The corresponding problem for d2 and d∞ will be on Assignment
2. Combining the two, if a sequence (an) converges to a under any one of
d1, d2, d∞ then it converges to a under all three.)

4. Show that the sequence (xn, yn) =
(

sin( 1
n2+1 ),

√
1

n4+n

)
converges to (0, 0)

in R2, with respect to each of the three metrics d1, d2 and d∞. Hint: Use
the fact that | sinx| 6 |x| for all real numbers x.

5. Show that the sequence (fn) in C[0, 1], defined by

fn(x) = x2 +
3x

n
+

2

n2
,

converges to the function f(x) = x2 in both the d1 and d∞ metrics.

6. Show that the sequence (fn) in C[0, 1], defined by

fn(x) =
n

n+ x
,

converges to the constant function f(x) = 1 in both the d1 and d∞ metrics.
Hint: Recall that (1 + 1

n )n → e as n→∞.

7. Let (xn) and (yn) be two sequences in a metric space (X, d).

(a) Show that if xn → a and yn → a then d(xn, yn)→ 0.

(b) Show that if xn → a and d(xn, yn)→ 0 then yn → a.

(c) Show that if xn → a and yn → b then d(xn, yn)→ d(a, b).

[Hint : Use the identity |d(x, y)− d(a, b)| 6 d(x, a) + d(y, b).]
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8. Consider the sequence (fn) of functions in C[0, 1] where

fn(x) =


nx if 0 6 x 6 1

n ,

2− nx if 1
n 6 x 6 2

n ,

0 if 2
n 6 x 6 1.
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(a) Show that fn converges to 0 pointwise.

(b) Find
∫ 1

0
fn(x) dx (it’s the area under the graph!).

(c) Prove that in the metric space (C[0, 1], d1) we have fn → 0.

(d) Prove that in the metric space (C[0, 1], d∞) it is not true that fn → 0.

(e) Modify the example to get a sequence of functions (gn) that converges
pointwise to 0, but does not converge to 0 in the d1 or d∞ metric.

Hint : use a sequence of the form gn(x) = λnfn(x), where λn is chosen
carefully.

(f) Prove that in the metric space (C[0, 1]), d∞) the sequence (fn) has
no limit at all.

9. Let X be any non-empty set and let d be the discrete metric.

(a) Let x ∈ X. What is the open ball B(x, ε) if 0 < ε < 1? What is the
open ball B(x, ε) if 1 6 ε?

(b) Show that a sequence (xn) converges to x in X if and only if it is
eventually constant, that is there exists N such that for all n > N ,
xn = x. Deduce that in R with the discrete metric the sequence ( 1

n )
does not converge to 0.
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MAS331: Metric Spaces
Problems on Chapter 3

1. In each of the following, write down a sequence (xn) in the subset F of
the metric space (X, d) that converges to a limit in X\F . Deduce that F
is not closed.

(a) X = R, F = ( 1
200 ,

1
100 ).

(b) X = R, F = [0, 1) ∪ (1, 2].

(c) X = (R2, d2), F = {(x, y) ∈ R2 : x+ y 6 0 and x > 0}.
(d) X = (R2, d∞), F = {(x, y) ∈ R2 : 1 < d∞((x, y), (0, 0)) 6 2}.

2. Show that the circle {(x, y) ∈ R2 : x2 + y2 = 1} is a closed subset of R2

with the metric d2.

3. Sketch the subset A = {(x, y) : x > 0 and y > 0} of the metric space
(R2, d∞), and sketch a typical small open ball around a point of A. (Note
that we’re using d∞, not d2!) Now prove that A is an open set in (R2, d∞).

4. In the set C[−1, 0], put F = {f ∈ C[−1, 0] : f(−1) = −1}.

(a) Show that F is a closed subset of (C[−1, 0], d∞).

(b) For n = 1, 2, 3, . . ., define fn ∈ C[−1, 0] by fn(x) = x2n − 2. Let g
be the constant function on [−1, 0], g(x) = −2 for all x. Show that
fn → g in (C[−1, 0], d1). Deduce that F is not a closed subset of
(C[−1, 0], d1).

(c) Show that (fn) is not convergent in (C[−1, 0], d∞).

5. Write down one example of a sequence (qn) of rational numbers that con-
verges, in R, to an irrational limit λ. By considering the sequence (λ−qn),
show that the set I of all irrational numbers is not closed in R.

6. Show that the disc {(x, y) ∈ R2 : x2+y2 6 5} is a closed subset of (R2, d2)
with its usual metric.

7. Let a = (a1, a2 . . . , am) ∈ Rm and let B = B(a, r) be an open ball in Rm

for the metric d2. By considering the sequence (a1 + r(1− 1
n ), a2, . . . , am),

show that B is not closed.
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8. From Problem 5 on Chapter 1, we know that, for all a ∈ Rm and all ε > 0,

B∞(a, ε/m) ⊆ B1(a, ε) ⊆ B∞(a, ε).

Let U be a subset of Rm.

(a) Use Problem 3 on Chapter 2 to show that U is closed under d1 if and
only if U is closed under d∞.

(b) Use Problem 5 on Chapter 1 to show that U is open under d1 if and
only if U is open under d∞.

(c) Give an alternative proof of (b) using (a) and complements or an
alternative proof of (a) using (b) and complements.

(The same results are true for d2 and d∞, see Assignment 2, so a subset
of Rm is open (resp closed) under all three metrics d1, d2, d∞ if it is open
(resp closed) under any one of them.)

9. Let X be a metric space, let x ∈ X and let F be the singleton set {x}.
How many sequences with all their terms in F are there? Deduce that F
is closed. Use a result from the notes to deduce that every finite subset of
X is closed.

10. Let A be the annulus {(x, y) ∈ R : 1 6 x2 + y2 6 4}. Express A as the
intersection of a closed ball and the complement of an open ball in (R2, d2)
and deduce that A is closed in (R2, d2). Show also that {(x, y) ∈ R : 1 <
x2 + y2 < 4} is open in (R2, d2).

11. Let X be a space with the discrete metric. Let x ∈ X. Show that B[x, 12 ] =
B(x, 12 ) = {x}. Deduce that every subset Y of X is open. By considering
complements, deduce that every subset Y of X is closed.
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MAS331: Metric Spaces
Problems on Chapter 4

1. Consider R2 with the Euclidean metric and R with its usual metric.

(a) Show that the function

f : R2 → R
(x, y) 7→ xy

is continuous at every point of R2.

(b) Hence deduce that {(x, y) ∈ R2 |xy > 1} is a closed subset of R2.

2. Let c ∈ R and let fc : (R2, d2)→ R be defined by

f(x, y) =

{
xy

x2+y2 if (x, y) 6= (0, 0),

c if (x, y) = (0, 0).

• Show that fc is continuous at any point (x, y) 6= (0, 0).

• By considering the sequence (( 1
n ,

k
n )) for different values of k ∈ R,

show that fc is not continuous at (0, 0).

3. Let (X, dX) and (Y, dY ) be metric spaces and let λ > 0. If f : X → Y
satisfies dY (f(x1), f(x2)) 6 λdX(x1, x2) for all x1, x2 ∈ X, show that f is
continuous.

4. Let f : Rm → Rm be a function. Use Problem 3 on Chapter 2 to show
that the following statements, about the continuity of f with respect to
different combinations of metrics, are equivalent:

(a) f : (Rm, d1)→ (Rm, d1) is continuous;

(b) f : (Rm, d1)→ (Rm, d∞) is continuous;

(c) f : (Rm, d∞)→ (Rm, d∞) is continuous;

(d) f : (Rm, d∞)→ (Rm, d1) is continuous.

(Using Assignment 2, Q4(i), this can be extended to combinations involv-
ing d2, giving nine equivalent statements!)

5. Let (X, d) be any metric space and let f : C[0, 1]→ X and g : X → C[0, 1]
be functions. Using Proposition 2.15, show that if f is continuous when
C[0, 1] has the metric d1 then it is continuous when C[0, 1] has the metric
d∞ and that if g is continuous when C[0, 1] has the metric d∞ then it is
continuous when C[0, 1] has the metric d1.

6. Let θ be the identity function from C[0, 1] to itself. Thus θ(f) = f for all
f ∈ C[0, 1]. Show that, as a function from (C[0, 1], d1) to (C[0, 1], d∞), θ
is not continuous but that, as a function from (C[0, 1], d∞) to (C[0, 1], d1),
θ is continuous. (Use the sequential definition of continuity together with
one example and one result in the notes from Chapter 2.)
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7. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces.

(a) Show that if y ∈ Y then the constant function f : X → Y given by
f(x) = y for all x ∈ X is continuous.

(b) Show that if f : X → Y , g : Y → Z are continuous then the composite
g ◦ f : X → Z is continuous.

(c) Give a second proof of (b) using whichever of the two definitions of
continuity you didn’t use in (b).

8. Define f : R → R by f(x) = 0 if x 6= 0, and f(0) = 1. Show that f is
not continuous by finding a closed subset A ⊆ R such that f−1(A) is not
closed.

9. In Problem 10 on Chapter 3, it was shown that A = {(x, y) ∈ R : 1 6 x2 +
y2 6 4} is closed in (R2, d2) and that C = {(x, y) ∈ R : 1 < x2 + y2 < 4}
is open in (R2, d2). Give alternative proofs for these facts by expressing A
and C as inverse images of intervals for an appropriate continuous function
from (R2, d2) to R.
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MAS331: Metric Spaces
Problems on Chapter 5

1. Let (fn) be the sequence in (C[0, 1], d∞) such that, for each x ∈ [0, 1],

fn(x) = 1 +
x

2
+
x2

22
+ · · ·+ xn

2n
.

(a) For m > n, show that fm(x) − fn(x) > 0 for all x ∈ [0, 1] and that
fm − fn is strictly increasing on (0, 1]. Hence show that, for m > n,

d∞(fn, fm) = fm(1)− fn(1) =
1

2n
− 1

2m
.

(b) Show that (fn) is a Cauchy sequence.

(c) Does (fn) converge in (C[0, 1], d∞)? If so, why?

2. Recall, from Problem 8 on Chapter 2, the sequence (fn) of functions in
C[0, 1] such that

fn(x) =


nx if 0 6 x 6 1

n ,

2− nx if 1
n 6 x 6 2

n ,

0 if 2
n 6 x 6 1.

whose graphs are as shown in the diagram.
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Let n > 1 and let x = 1
n . Compute fn(x) and f2n(x). Deduce that

d∞(f2n, fn) ≥ 1 and hence that (fn) is not Cauchy in (C[0, 1], d∞). Show
also that if m > 2n then d∞(fm, fn) ≥ 1 and that no subsequence of (fn)
is Cauchy in (C[0, 1], d∞).

3. Give an example of a Cauchy sequence in the unbounded open interval
(0,∞) that is not convergent in (0,∞). Give an example of a Cauchy
sequence in the set I of all irrational numbers that is not convergent in I.
Deduce that (0,∞) and I are not complete.
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4. Let X be a set equipped with two metrics, d and d′, and suppose that
there are constants J,K > 0 such that

Jd′(x, y) 6 d(x, y) 6 Kd′(x, y)

for all x, y ∈ X. (For example, X could be Rm and d and d′ could be any
two of d1, d2 and d∞, see Problem 3 on Chapter 1.)

(a) Show that K−1d(x, y) 6 d′(x, y) 6 J−1d(x, y) for all x, y ∈ X. (This
is easy and makes the “if and only if” proofs in the later parts sym-
metric.)

(b) Show that xn → x in the metric space (X, d) if and only if xn → x
in the metric space (X, d′).

(c) Show that (xn) is a Cauchy sequence in (X, d) if and only if it is a
Cauchy sequence in (X, d′).

(d) Show that (X, d) is complete if and only if (X, d′) is complete.

5. Use Problem 4 together with Problem 3 on Chapter 1 and Theorem 5.10
to show that, for m > 1, Rm is complete with respect to the metric d∞
and with respect to the metric d1.

6. Let X = (0,∞) viewed as a subspace of R with its usual metric. Give
an example of a Cauchy sequence (xn) in X and a continuous function
f : X → X such that (f(xn)) is not a Cauchy sequence. (This is in
contrast to the situation for convergent sequences, where a continuous
function sends convergent sequences to convergent sequences.)

7. Let X be a non-empty set and let d be the discrete metric on X. Let (xn)
be a Cauchy sequence in (X, d). Show that there exist N ∈ R and a ∈ X
such that xn = a for all n > N . Deduce that (X, d) is complete.
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MAS331: Metric Spaces
Problems on Chapter 6

1. (a) Consider the function f : [1,∞) → [1,∞) defined by f(x) = x + 1
x .

Prove that |f(x) − f(y)| < |x − y| whenever x 6= y, but that f has
no fixed point. (done in class this year)

(b) Fix 1
2 6 k < 1 and let g(x) = kf(x). Show that g(1) ≥ 1 and that

g is increasing on (1,∞). Deduce that g(x) ≥ 1 for all x ∈ [1,∞) so
that we can view g as a function from [1,∞) to [1,∞).

(c) Show that if k and g are as in (b), then g has a unique fixed point in
[1,∞). Find the fixed point when k = 3

4 .

(d) Taking x0 = 1, and iterating with xn+1 = 3
4 (xn + 1

xn
), show that

|xn − x| ≤ 2×3n
4n .

2. Prove that the function f : R3 → R3 defined by

f(x, y, z) = ( 1
2 cos y + 1, 23 sin z, 34x)

is a contraction, where R3 is given the Euclidean metric.

3. Let x, y ∈ [−1, 1]. Show that | sin(x+y
2 )| 6 sin(1). Hence show that the

function f : [−1, 1] → [−1, 1] given by f(x) = cos(x) is a contraction on
[−1, 1] with contraction factor sin(1).

4. Let f : [−1, 1] → [−1, 1] be defined by f(x) = 1
6 (x3 + x2 + 1). Use the

differential criterion to show that f is a contraction of [−1, 1]. Quote two
results from Chapter 5 to explain why [−1, 1] is complete. Deduce that
there is a unique value of x ∈ [−1, 1] such that x3 + x2 − 6x+ 1 = 0.

(To see that f : [−1, 1]→ [−1, 1], use elementary calculus: f has stationary
points at −23 and 0. f(−1) = f(0) = 1

6 ∈ [−1, 1], f(−23 ) = 31
27×6 ∈= f(0)

and f(1) = 1
2 ∈ [−1, 1] so f : [−1, 1]→ [−1, 1].)

5. Use the differential criterion to show that cos ◦ sin is a contraction on R
with contraction factor k = sin(1). Deduce that there is a unique element
x ∈ R such that cos(sin(x)) = x.

6. Show that the function h : [1,∞)→ [1,∞) defined by h(x) = 1 + e−x is a
contraction with contraction factor e−1. Deduce that the equation

x = 1 + e−x

has a unique solution in [1,∞).

7. Let f and g both be contractions of the metric space (X, d) with contrac-
tion factors k and k′ respectively. Show that the function f ◦ g (which
takes x to f(g(x))) is a contraction of (X, d) with contraction factor kk′.

Show also that if x is a fixed point of f ◦ g then g(f(g(x))) = g(x). Hence
find a fixed point of g ◦ f (in terms of x).

11



8. Let T : C[0, 12 ]→ C[0, 12 ] be given by

(T (f))(x) = 1 +

∫ x

0

f(u) du.

(Given any f ∈ C[0, 12 ] this formula enables you to work out T (f) which,
naturally, is another member of C[0, 12 ]. For example, if f(x) = x2 then

(T (f))(x) = 1 +

∫ x

0

u2 du = 1 +
x3

3
.

)
.

(a) Calculate (T (f))(x) when f(x) = sinx.

(b) Show that for any f, g ∈ C[0, 12 ] and x ∈ [0, 12 ]

|(T (f))(x)− (T (g))(x)| =
∣∣∣∣∫ x

0

(f(u)− g(u))du

∣∣∣∣ 6 1
2d∞(f, g)

and deduce that d∞(T (f), T (g)) 6 1
2d∞(f, g), so that T is a contrac-

tion.

(c) Let the sequence f1, f2, f3, . . . in C[0, 12 ] be defined by f1(x) = 1 + x,
f2 = T (f1), f3 = T (f2),. . . . Calculate f2(x) and f3(x). Deduce
(without proof) a formula for fn(x). State, without proof, the limit
f(x) of this sequence, giving your answer as a standard function.

(d) Our general theory tells us that the f found in (c) should be the
unique fixed point of T ; i.e. it should satisfy

f(x) = 1 +

∫ x

0

f(u) du.

Verify that the function f found in (c) does satisfy this equation.

9. Let T : C[0, 1]→ C[0, 1] be given by

(T (f))(x) = 1 + 3

∫ x

0

u2f(u) du.

(a) Starting with f1 given by f1(x) = 1, iterate T to find the next three
terms of the sequence f2 = T (f1), f3 = T (f2), . . .. Guess (in series
form) the limit f(x) of this sequence. Then express f(x) in terms of
the exponential function.

(b) Show, by working out the right-hand side, that the f found in (a) is
a solution of the integral equation

f(x) = 1 + 3

∫ x

0

u2f(u) du.
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(c) Show by differentiating f that it is a solution of the differential equa-
tion

df

dx
= 3x2f (x ∈ [0, 1])

satisfying the initial condition f(0) = 1.

10. Let (xn) be a Cauchy sequence in a complete metric space X, with limit
x. Show that, for all m,n,

d(xm, xn) 6 d(xm, x) + d(x, xn) and

d(x, xn) 6 d(x, xm) + d(xm, xn).

Deduce that

−d(x, xm) ≤ d(xm, xn)− d(x, xn) ≤ d(x, xm)

and hence that, if n is fixed, d(xm, xn)→ d(x, xn) as m→∞.
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MAS331: Metric Spaces
Problems on Chapter 7

1. For each of the following subsets K of R2, state whether K is compact,
justifying your answers.

(a) {(x, y) ∈ R2 : x > 0 and y > 0};
(b) {(x, y) ∈ R2 : x2 + y2 < 1};
(c) {(x, y) ∈ R2 : x2 + y2 ≥ 1};
(d) {(x, y) ∈ R2 : x2 + y2 = 1}.

2. Let A be the subset

{(x, y) ∈ R2 : 1 6 (x− 4)2 + (y − 4)2 6 4}

of R2. Write down the smallest positive real number D such that d2(a, b) 6
D for all (a, b) ∈ A and the smallest positive real number M such that
d2(a, 0) 6M for all (a, b) ∈ A.

3. Let A be a subset of Rm for some m > 1. Using Problem 3 on Chapter
2 and Problem 4(i) from Assignment 2, or otherwise, show that if A is
compact under any one of the metrics d1, d2, d∞ then it is compact under
all three.

4. Show that a finite union of compact sets in a metric space is again compact.

5. Show that a set X with the discrete metric is compact precisely when X
is a finite set.

6. Let X be a metric space, let A be a subset of X and let x ∈ X. Show
that A is bounded if and only if there exists M such that d(a, x) 6M for
all a ∈ A.

7. LetX be a compact metric space and let F1 ⊃ F2 ⊃ . . . ⊃ Fn ⊃ Fn+1 ⊃ . . .
be a sequence of non-empty closed subsets. Show that F1∩F2∩· · ·∩Fn∩· · ·
is non-empty.

8. Let X be a compact metric space and let f : X → X be a continuous
function without any fixed points (that is, f(x) 6= x for any x ∈ X). Show
that there is an ε > 0 such that d(f(x), x) > ε for all x ∈ X.

9. Let X be a compact metric space and let f : X → X be a continuous
function. Show that there is a non-empty closed subset A ⊂ X such that
f(A) = A.

Hint: Consider F1 = f(X), F2 = f(F1), . . . and A =
⋂
Fn.
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