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Abstract

Cylindrical probability measures are finitely additive measures on Banach spaces
that have sigma-additive projections to Euclidean spaces of all dimensions. They
are naturally associated to notions of weak (cylindrical) random variable and hence
weak (cylindrical) stochastic processes. In this paper we focus on cylindrical Lévy
processes. These have (weak) Lévy-Itô decompositions and an associated Lévy-
Khintchine formula. If the process is weakly square integrable, its covariance oper-
ator can be used to construct a reproducing kernel Hilbert space in which the process
has a decomposition as an infinite series built from a sequence of uncorrelated bona
fide one-dimensional Lévy processes. This series is used to define cylindrical sto-
chastic integrals from which cylindrical Ornstein-Uhlenbeck processes may be con-
structed as unique solutions of the associated Cauchy problem. We demonstrate
that such processes are cylindrical Markov processes and study their (cylindrical)
invariant measures.
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1 Introduction

Probability theory in Banach spaces has been extensively studied since the 1960s and
there are several monographs dedicated to various themes within the subject - see e.g.
Heyer [8], Linde [10], Vakhania et al [20], Ledoux and Talagrand [9]. In general, the
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theory is more complicated than in Euclidean space (or even in an infinite-dimensional
Hilbert space) and much of this additional complexity arises from the interaction between
probabilistic ideas and Banach space geometry. The theory of type and cotype Banach
spaces (see e.g. Schwartz [19]) is a well-known example of this phenomenon.
From the outset of work in this area, there was already interest in cylindrical probability
measures (cpms), i.e. finitely additive set functions whose “projections” to Euclidean
space are always bona fide probability measures. These arise naturally in trying to
generalise a mean zero normal distribution to an infinite-dimensional Banach space. It
is clear that the covariance Q should be a bounded linear operator that is positive and
symmetric but conversely it is not the case that all such operators give rise to a sigma-
additive probability measure. Indeed in a Hilbert space, it is necessary and sufficient for
Q to be trace-class (see e.g. Schwartz [19], p.28) and if we drop this requirement (and
one very natural example is when Q is the identity operator) then we get a cpm.
Cpms give rise to cylindrical stochastic processes and these appear naturally as the
driving noise in stochastic partial differential equations (SPDEs). An introduction to
this theme from the point of view of cylindrical Wiener processes can be found in Da
Prato and Zabczyk [13]. In recent years there has been increasing interest in SPDEs
driven by Lévy processes and Peszat and Zabczyk [12] is a monograph treatment of this
topic. Some specific examples of cylindrical Lévy processes appear in this work and
Priola and Zabczyk [14] makes an in-depth study of a specific class of SPDEs driven
by cylindrical stable processes. In Brzeźniak and Zabczyk [4] the authors study the
path-regularity of an Ornstein-Uhlenbeck process driven by a cylindrical Lévy process
obtained by subordinating a cylindrical Wiener process.
The purpose of this paper is to begin a systematic study of cylindrical Lévy processes
in Banach spaces with particular emphasis on stochastic integration and applications to
SPDEs. It can be seen as a successor to an earlier paper by one of us (see Riedle [15]) in
which some aspects of this programme were carried out for cylindrical Wiener processes.
The organisation of the paper is as follows. In section 2 we review key concepts of
cylindrical proabability, introduce the cylindrical version of infinite divisibility and obtain
the corresponding Lévy-Khintchine formula. In section 3 we introduce cylindrical Lévy
processes and describe their Lévy-Itô decomposition. An impediment to developing the
theory along standard lines is that the noise terms in this formula depend non-linearly on
vectors in the dual space to our Banach space. In particular this makes the “large jumps”
term difficult to handle. To overcome these problems we restrict ourself to the case where
the cylindrical Lévy process is square-integrable with a well-behaved covariance operator.
This enables us to develop the theory along similar lines to that used for cylindrical
Wiener processes as in Riedle [15] and to find a series representation for the cylindrical
Lévy process in a reproducing kernel Hilbert space that is determined by the covariance
operator. This is described in section 4 of this paper where we also utilise this series
expansion to define stochastic integrals of suitable predictable processes.
Finally, in section 5 we consider SPDEs driven by additive cylindrical Lévy noise. In the
more familiar context of SPDEs driven by legitimate Lévy processes in Hilbert space, it
is well known that the weak solution of this equation is an Ornstein-Uhlenbeck process
and the investigation of these processes has received a lot of attention in the literature
(see e.g. Chojnowska-Michalik [5], Applebaum [2] and references therein). In our case we
require that the initial condition is a cylindrical random variable and so we are able to
construct cylindrical Ornstein-Uhlenbeck processes as weak solutions to our SPDE. We
remark that weak cylindrical solutions to the Cauchy problem always exist, in contrast
to the standard theory of Banach-space valued SPDEs where solutions may not exist (as
bona fide stochastic processes) even when the driving noise is a Wiener process (see e.g.
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Theorem 7.1 in [22]). We study the Markov property (in the cylindrical sense) of the
solution and also find conditions for there to be a unique invariant cylindrical measure.
Finally, we give a condition under which the Ornstein-Uhlenbeck process is “radonified”,
i.e. it is a stochastic process in the usual sense.

Notation and Terminology: R+ := [0,∞). The Borel σ-algebra of a topological space
T is denoted by B(T ). By a Lévy process in a Banach space we will always mean a
stochastic process starting at zero (almost surely) that has stationary and independent
increments and is stochastically continuous. We do not require that almost all paths are
necessarily càdlàg i.e. right continuous with left limits.

2 Cylindrical measures

Let U be a Banach space with dual U∗. The dual pairing is denoted by 〈u, a〉 for u ∈ U
and a ∈ U∗. For each n ∈ N, let U∗n denote the set of all n-tuples of vectors from U∗.
It is a real vector space under pointwise addition and scalar multiplication and a Banach
space with respect to the “Euclidean-type” norm

∥∥a(n)

∥∥2 :=
∑n

k=1 ‖ak‖2, where a(n) =
(a1, . . . , an) ∈ U∗n. Clearly U∗n is separable if U∗ is. For each a(n) = (a1, . . . , an) ∈ U∗n

we define a linear map

πa1,...,an : U → Rn, πa1,...,an(u) = (〈u, a1〉, . . . , 〈u, an〉).
We often use the notation πa(n) := πa1,...,an and in particular when n = 1 and a(1) = a ∈
U∗, we will write πa(1) = a. It is easily verified that for each a(n) = (a1, . . . , an) ∈ U∗n

the map πa(n) is bounded with
∥∥πa(n)

∥∥ 6
∥∥a(n)

∥∥.
The Borel σ-algebra in U is denoted by B(U). Let Γ be a subset of U∗. Sets of the form

Z(a1, . . . , an; B) := {u ∈ U : (〈u, a1〉, . . . , 〈u, an〉) ∈ B}
= π−1

a1,...,an
(B),

where a1, . . . , an ∈ Γ and B ∈ B(Rn) are called cylindrical sets . The set of all cylindrical
sets is denoted by Z(U,Γ) and it is an algebra. The generated σ-algebra is denoted by
C(U,Γ) and it is called the cylindrical σ-algebra with respect to (U,Γ). If Γ = U∗ we
write Z(U) := Z(U, Γ) and C(U) := C(U,Γ).
From now on we will assume that U is separable and note that in this case, the Borel
σ-algebra B(U) and the cylindrical σ-algebra C(U) coincide.
The following lemma shows that for a finite subset Γ ⊆ U∗ the algebra Z(U,Γ) is a
σ-algebra and it gives a generator in terms of a generator of the Borel σ-algebra B(Rn),
where we recall that a generator of a σ-algebra E in a space X is a set E in the power
set of X such that the smallest σ-algebra containing E is E.

Lemma 2.1. If Γ = {a1, . . . , an} ⊆ U∗ is finite we have

C(U,Γ) = Z(U, Γ) = σ({Z(a1, . . . , an; B) : B ∈ F}),
where F is an arbitrary generator of B(Rn).

Proof. We omit this as it is a straightforward set theoretic argument.

A function µ : Z(U) → [0,∞] is called a cylindrical measure on Z(U), if for each finite
subset Γ ⊆ U∗ the restriction of µ to the σ-algebra C(U, Γ) is a measure. A cylindrical
measure is called finite if µ(U) < ∞ and a cylindrical probability measure if µ(U) = 1.
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For every function f : U → C which is measurable with respect to C(U,Γ) for a finite
subset Γ ⊆ U∗ the integral

∫
f(u) µ(du) is well defined as a complex valued Lebesgue

integral if it exists. In particular, the characteristic function ϕµ : U∗ → C of a finite
cylindrical measure µ is defined by

ϕµ(a) :=
∫

U

ei〈u,a〉 µ(du) for all a ∈ U∗.

For each a(n) = (a1, . . . , an) ∈ U∗n we obtain an image measure µ ◦ π−1
a(n)

on B(Rn). Its
characteristic function ϕµ◦π−1

a(n)
is determined by that of µ:

ϕµ◦π−1
a(n)

(β) = ϕµ(β1a1 + · · ·+ βnan) (2.1)

for all β = (β1, . . . , βn) ∈ Rn.
If µ1 and µ2 are cylindrical probability measures on U their convolution is the cylindrical
probability measure defined by

(µ1 ∗ µ2)(A) =
∫

U

1A(x + y)µ1(dx)µ2(dy),

for each A ∈ Z(U). Indeed if A = π−1
a(n)

(B) for some n ∈ N, a(n) ∈ U∗n, B ∈ B(Rn),
then it is easily verified that

(µ1 ∗ µ2)(A) = (µ1 ◦ π−1
a(n)

) ∗ (µ2 ◦ π−1
a(n)

)(B). (2.2)

A standard calculation yields ϕµ1∗µ2 = ϕµ1ϕµ2 . For more information about convolution
of cylindrical probability measures, see [17]. The n-times convolution of a cylindrical
probability measure µ with itself is denoted by µ∗n.

Definition 2.2. A cylindrical probability measure µ on Z(U) is called infinitely di-
visible if for all m ∈ N there exists a cylindrical probability measure µ1/m such that
µ =

(
µ1/m

)∗m
.

It follows that a cylindrical probability measure µ with characteristic function ϕµ is
infinitely divisible if and only if for all m ∈ N there exists a characteristic function ϕµ1/m

of a cylindrical probability measure µ1/m such that

ϕµ(a) =
(
ϕµ1/m(a)

)m for all a ∈ U∗.

The relation (2.1) implies that for every a(n) ∈ U∗n and β = (β1, . . . , βn) ∈ Rn we have

ϕµ◦π−1
a(n)

(β) = ϕµ(β1a1 + · · ·+ βnan)

=
(
ϕµ1/m(β1a1 + · · ·+ βnan)

)m

=
(

ϕµ1/m◦π−1
a(n)

(β)
)m

.

In the converse direction, a cylindrical probability measure µ may fail to be infinitely
divisible even though all finite-dimensional projections µ◦π−1

a(n) are. The relevant counter-
examples are discussed in [7] and [11].

Remark 2.3. A probability measure µ on B(U) is called infinitely divisible if for each
m ∈ N there exists a measure µ1/m on B(U) such that µ = (µ1/m)∗m (see e.g. Linde
[10], section 5.1). Consequently, every infinitely divisible probability measure on B(U) is
also an infinitely divisible cylindrical probability measure on Z(U).
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Because µ◦a−1 is an infinitely divisible probability measure on B(R) the Lévy-Khintchine
formula in R implies that for every a ∈ U∗ there exist some constants βa ∈ R and
σa ∈ R+ and a Lévy measure νa on B(R) such that

ϕµ(a) = ϕµ◦a−1(1) = exp

(
iβa − 1

2σ2
a +

∫

R\{0}

(
eiγ − 1− iγ 1B1(γ)

)
νa(dγ)

)
, (2.3)

where B1 := {β ∈ R : |β| 6 1}. A priori all parameters in the characteristics of the
image measure µ ◦ a−1 depend on the functional a ∈ U∗. The following result sharpens
this representation.

Theorem 2.4. Let µ be a cylindrical probability measure on Z(U). If µ is infinitely
divisible then there exists a cylindrical measure ν on Z(U) such that the representation
(2.3) is satisfied with

νa = ν ◦ a−1 for all a ∈ U∗.

Proof. Fix a(n) = (a1, . . . , an) ∈ U∗n and let νa1,...,an denote the Lévy measure on B(Rn)
of the infinitely divisible measure µ ◦ π−1

a1,...,an
. Define the family of cylindrical sets

G := {Z(a1, . . . , an;B) : a1, . . . , an ∈ U∗, n ∈ N, B ∈ Fa(n)},

where

Fa(n) := {(α, β] ⊆ Rn : νa1,...,an(∂(α, β]) = 0, 0 /∈ [α, β]}

and ∂(α, β] denotes the boundary of the n-dimensional interval

(α, β] := {v = (v1, . . . , vn) ∈ Rn : αi < vi 6 βi, i = 1, . . . , n}

for α = (α1, . . . , αn) ∈ Rn, β = (β1, . . . , βn) ∈ Rn.
Our proof relies on the relation

lim
tk→0

1
tk

∫

Rn

1B(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ) =
∫

Rn

1B(γ) νa1,...,an(dγ). (2.4)

for all sets B ∈ Fa(n) . This can be deduced from Corollary 2.8.9. in [18] which states
that

lim
tk→0

1
tk

∫

Rn

f(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ) =
∫

Rn

f(γ) νa1,...,an(dγ) (2.5)

for all bounded and continuous functions f : Rn → R which vanish on a neighborhood
of 0. The relation (2.4) can be seen in the following way: let B = (α, β] be a set in Fa(n)

for α, β ∈ Rn. Because 0 /∈ B̄ there exists ε > 0 such that 0 /∈ [α − ε, β + ε] where
α − ε := (α1 − ε, . . . , αn − ε) and β + ε := (β1 + ε, . . . , βn + ε). Define for i = 1, . . . , n
the functions gi : R→ [0, 1] by

gi(c) =
(
1− (αi−c)

ε

)
1(αi−ε,αi](c) + 1(αi,βi](c) +

(
1− (c−βi)

ε

)
1(βi,βi+ε](c),

and interpolate the function γ 7→ 1(α,β](γ) for γ = (γ1, . . . , γn) by

f((γ1, . . . , γn)) := g1(γ1) · . . . · gn(γn).
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Because 1B 6 f 6 1(α−ε,β+ε] we have

1
tk

∫

Rn

1B(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ) 6 1
tk

∫

Rn

f(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ)

and
∫

Rn

f(γ) νa1,...,an(dγ) 6
∫

Rn

1(α−ε,β+ε](γ) νa1,...,an(dγ) = νa1,...,an((α− ε, β + ε]).

Since f is bounded, continuous and vanishes on a neighborhood of 0, it follows from (2.5)
that

lim sup
tk→0

1
tk

∫

Rn

1B(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ) 6 νa1,...,an((α− ε, β + ε]). (2.6)

By considering (α + ε, β − ε] ⊆ (α, β] we obtain similarly that

νa1,...,an((α + ε, β − ε]) 6 lim inf
tk→0

1
tk

∫

Rn

1B(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ). (2.7)

Because νa1,...,an(∂B) = 0 the inequalities (2.6) and (2.7) imply (2.4).
Now we define a set function

ν : Z(U) → [0,∞], ν(Z(a1, . . . , an; B)) := νa1,...,an(B).

First, we show that ν is well defined. For Z(a1, . . . , an; B) ∈ G equation (2.4) allows us
to conclude that

ν(Z(a1, . . . , an; B)) = lim
tk→0

1
tk

∫

Rn

1B(γ) (µ ◦ π−1
a1,...,an

)∗tk(dγ)

= lim
tk→0

1
tk

∫

Rn

1B(γ) (µ∗tk ◦ π−1
a1,...,an

)(dγ)

= lim
tk→0

1
tk

∫

U

1B(πa1,...,an(u)) µ∗tk(du)

= lim
tk→0

1
tk

µ∗tk(Z(a1, . . . , an; B)).

It follows that for two sets in G with Z(a1, . . . , an; B) = Z(b1, . . . , bm;C) that

ν(Z(a1, . . . , an; B)) = ν(Z(b1, . . . , bm;C)),

which verifies that ν is well defined on G.
Having shown that ν is well-defined on G for fixed a(n) = (a1, . . . , an) ∈ U∗n we now
demonstrate that its restriction to the σ-algebra Z(U, {a1, . . . , an}) is a measure so that
it yields a cylindrical measure on Z(U).
Define a set of n-dimensional intervals by

H := {(α, β] ⊆ Rn : 0 /∈ [α, β]}.

Because νa1,...,an is a σ-finite measure the set

H\Fa(n) = {(α, β] ∈ H : νa1,...,an(∂(α, β]) 6= 0}
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is countable. Thus, the set Fa(n) generates the same σ-algebra asH because the countably
missing sets in Fa(n) can easily be approximated by sets in Fa(n) . But H is known to be
a generator of the Borel σ-algebra B(Rn) and so Lemma 2.1 yields that

Ga(n) := {Z(a1, . . . , an;B) : B ∈ Fa(n)}
generates Z(U, {a1, . . . , an}).
Furthermore, Ga(n) is a semi-ring because Fa(n) is a semi-ring. Secondly, ν restricted to
Ga(n) is well defined and is a pre-measure. For, if {Zk := Zk(a1, . . . , an; Bk) : k ∈ N} are
a countable collection of disjoint sets in Ga(n) with ∪Zk ∈ Ga(n) then the Borel sets Bk

are disjoint and it follows that

ν


 ⋃

k>1

Zk


 = ν


 ⋃

k>1

π−1
a1,...,an

(Bk)


 = ν


π−1

a1,...,an


 ⋃

k>1

Bk







= νa1,...,an


 ⋃

k>1

Bk


 =

∞∑

k=1

νa1,...,an
(Bk) =

∞∑

k=1

ν(Zk).

Thus, ν restricted to Ga(n) is a pre-measure and because it is σ-finite it can be extended
uniquely to a measure on Z(U, {a1, . . . , an}) by Carathéodory’s extension theorem, which
verifies that ν is a cylindrical measure on Z(U).

By the construction of the cylindrical measure ν in Theorem 2.4 it folllows that every
image measure ν ◦ π−1

a(n)
is a Lévy measure on B(Rn) for all a(n) ∈ U∗n. This motivates

the following definition:

Definition 2.5. A cylindrical measure ν on Z(U) is called a cylindrical Lévy measure if
for all a1, . . . , an ∈ U∗ and n ∈ N the measure ν ◦π−1

a1,...,an
is a Lévy measure on B(Rn).

Remark 2.6. Let ν be a Lévy measure ν on B(U) (see [10] for a definition). Then, if
Definition 2.5 is sensible ν should be also a cylindrical Lévy measure. That this is true,
we explain in the following.
According to Proposition 5.4.5 in [10] the Lévy measure ν satisfies

sup
‖a‖61

∫

‖u‖61

|〈u, a〉|2 ν(du) < ∞. (2.8)

This result can be generalised to

sup
‖a‖61

∫

{u:|〈u,a〉|61}
|〈u, a〉|2 ν(du) < ∞. (2.9)

For, the result (2.8) relies on Proposition 5.4.1 in [10] which is based on Lemma 5.3.10
therein. In the latter the set {u : ‖u‖ 6 1} can be replaced by the larger set {u : |〈u, a〉| 6
1} for a ∈ U∗ with ‖a‖ 6 1 because in the proof the inequality (line -10, page 72 in [10])

1− cos t > t2

3 for all |t| 6 1,

is applied for t = ‖u‖ while we apply it for t = |〈u, a〉|. Then we can follow the original
proof in [10] to obtain (2.9). From (2.9) it is easy to derive

sup
‖a‖6M

∫

{u:|〈u,a〉|6N}
|〈u, a〉|2 ν(du) < ∞ (2.10)
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for all M, N > 0.
For arbitrary a(n) = (a1, . . . , an) ∈ U∗n and Bn := {β ∈ Rn : |β| 6 1} we have that

π−1
a(n)

(Bn) = {u : 〈u, a1〉2 + · · ·+ 〈u, an〉2 6 1} ⊆ {u : 1
n (〈u, a1〉+ · · ·+ 〈u, an〉)2 6 1}

= {u : |〈u, (a1 + · · ·+ an)〉| 6 √
n } =: D,

where we used the inequality (γ1 + · · · + γn)2 6 n(γ2
1 + · · · + γ2

n) for γ1, . . . , γn ∈ R. It
follows from (2.10) that

∫

Bn

|β|2 (ν ◦ π−1
a(n)

)(dβ) =
n∑

k=1

∫

π−1
a(n)

(Bn)

|〈u, ak〉|2 ν(du) 6
n∑

k=1

∫

D

|〈u, ak〉|2 ν(du) < ∞.

As a result we obtain that ν is a cylindrical Lévy measure on B(Rn).

In general, for Lévy measures ν on arbitrary Banach spaces there is no characterisation
corresponding to integrability of

∫
U

min{1, ‖u‖p} ν(du). However for spaces of type p
where p ∈ [1, 2] and cotype p where p ≥ 2 some results in this direction are known, see
[3] and [6]. It would be interesting to discover if such a characterisation is possible for
cylindrical measures.
In the next section we will sharpen the structure of the Lévy-Khintchine formula for
infinitely divisible cylindrical measures. It is appropriate to state the result at this
juncture:

Theorem 2.7. Let µ be an infinitely divisible cylindrical probability measure. Then there
exist a map r : U∗ → R, a quadratic form s : U∗ → R and a cylindrical Lévy measure ν
on Z(U) such that:

ϕµ(a) = exp

(
ir(a)− 1

2s(a) +
∫

R\{0}

(
eiγ − 1− iγ 1B1(γ)

)
(ν ◦ a−1)(dγ)

)

for all a ∈ U∗.

3 Cylindrical stochastic processes

Let (Ω,F , P ) be a probability space that is equipped with a filtration {Ft}t>0 and
L0(Ω,F , P ) denotes the space of real-valued random variables on Ω equipped with the
topology of convergence in probability.
Similarly to the correspondence between measures and random variables there is an
analogous random object associated to cylindrical measures:

Definition 3.1. A cylindrical random variable Y in U is a linear map

Y : U∗ → L0(Ω,F , P ).

A cylindrical process X in U is a family (X(t) : t > 0) of cylindrical random variables
in U .

The characteristic function of a cylindrical random variable X is defined by

ϕX : U∗ → C, ϕX(a) = E[exp(iXa)].
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The concepts of cylindrical measures and cylindrical random variables match perfectly.
Indeed, if Z = Z(a1, . . . , an; B) is a cylindrical set for a1, . . . , an ∈ U∗ and B ∈ B(Rn)
we obtain a cylindrical probability measure µ by the prescription

µ(Z) := P ((Xa1, . . . , Xan) ∈ B). (3.11)

We call µ the cylindrical distribution of X and the characteristic functions ϕµ and ϕX of
µ and X coincide. It is shown in Proposition IV.3.4 (p.231) of [20] that X is continuous
from U∗ to L0(Ω,F , P ) if and only if the characteristic function ϕX is continuous from
U∗ to C.
By some abuse of notation we define for a cylindrical process X = (X(t) : t > 0):

X(t) : U∗n → L0(Ω,F , P ;Rn), X(t)(a1, . . . , an) := (X(t)a1, . . . , X(t)an).

In this way, one obtains for fixed (a1, . . . , an) ∈ U∗n an n-dimensional stochastic process

(X(t)(a1, . . . , an) : t > 0).

It follows from (3.11) that its marginal distribution is given by the image measure of the
cylindrical distribution µt of X(t):

PX(t)(a1,...,an) = µt ◦ π−1
a1,...,an

(3.12)

for all a1, . . . , an ∈ U∗n. Combining (3.12) with (2.1) shows that

ϕX(t)(a1,...,an)(β1, . . . , βn) = ϕX(t)(β1a1+···+βnan)(1) (3.13)

for all β1, . . . , βn ∈ Rn and a1, . . . , an ∈ U∗.

We give now the proof of Theorem 2.7.

Proof. (of Theorem 2.7).
Because of (2.3), i.e.

ϕµ(a) = ϕµ◦a−1(1) = exp

(
iβa − 1

2σ2
a +

∫

R\{0}

(
eiγ − 1− iγ 1B1(γ)

)
νa(dγ)

)
,

we have to show that ϕµ◦a−1 is in the claimed form. Theorem 2.4 implies that there
exists a cylindrical Lévy measure ν such that νa = ν ◦ a−1 for each a ∈ U∗. By defining
r(a) := βa it remains to show that the function

s : U∗ → R+, s(a) := σ2
a

is a quadratic form. Let X be a cylindrical random variable with distribution µ. By the
Lévy-Itô decomposition in R (see e.g. Chapter 2 in [1]) it follows that

Xa = r(a) + σaWa +
∫

0<|β|<1

β Ña(dβ) +
∫

|β|>1

β Na(dβ) P -a.s., (3.14)

where Wa is a real valued centred Gaussian random variable with EW 2
a = 1, Na is

an independent Poisson random measure on R\{0} and Ña is the compensated Poisson
random measure.
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By applying (3.14) to Xa, Xb and X(a + b) for arbitrary a, b ∈ U∗ we obtain

σa+bWa+b = σaWa + σbWb P -a.s. (3.15)

Similarly, for β ∈ R we have

σβaWβa = βσaWa P -a.s. (3.16)

By squaring both sides of (3.16) and then taking expectations it follows that the function s
satisfies s(βa) = β2s(a). Similarly, one derives from (3.15) that σ2

a+b = σ2
a +σ2

b +2ρ(a, b),
where ρ(a, b) := Cov(σaWa, σbWb). Equation (3.15) yields for c ∈ U∗

ρ(a + c, b) = Cov(σa+cWa+c, σbWb)
= Cov(σaWa + σcWc, σbWb)
= ρ(a, b) + ρ(c, b),

which implies together with properties of the covariance that ρ is a bilinear form. Thus
the function

Q : U∗ × U∗ → R, Q(a, b) := s(a + b)− s(a)− s(b) = 2ρ(a, b) (3.17)

is a bilinear form and s is thus a quadratic form.

The cylindrical process X = (X(t) : t > 0) is called adapted to a given filtration {Ft}t>0,
if X(t)a is Ft-measurable for all t > 0 and all a ∈ U∗. The cylindrical process X is
said to have weakly independent increments if for all 0 6 t0 < t1 < · · · < tn and all
a1, . . . , an ∈ U∗ the random variables

(X(t1)−X(t0))a1, . . . , (X(tn)−X(tn−1))an

are independent.

Definition 3.2. An adapted cylindrical process (L(t) : t > 0) is called a weakly cylin-
drical Lévy process if

(a) for all a1, . . . , an ∈ U∗ and n ∈ N the stochastic process
(
(L(t)(a1, . . . , an) : t > 0

)
is a Lévy process in Rn.

By Definition 3.2 the random variable L(1)(a1, . . . , an) is infinitely divisible for all a1, . . . , an ∈
U∗ and the equation (3.12) implies that the cylindrical distribution of L(1) is an infinitely
divisible cylindrical measure.

Example 3.3. An adapted cylindrical process (W (t) : t > 0) in U is called a weakly
cylindrical Wiener process, if for all a1, . . . , an ∈ U∗ and n ∈ N the Rn-valued stochastic
process

(
(W (t)(a1, . . . , an) : t > 0

)

is a Wiener process in Rn. Here we call an adapted stochastic process (X(t) : t > 0)
in Rn a Wiener process if the increments X(t) −X(s) are independent, stationary and
normally distributed with expectation E[X(t) − X(s)] = 0 and covariance Cov[X(t) −
X(s), X(t)−X(s)] = |t− s|C for a non-negative definite symmetric matrix C. If C = Id
we call X a standard Wiener process. Obviously, a weakly cylindrical Wiener process
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is an example of a weakly cylindrical Lévy process. The characteristic function of W is
given by

ϕW (t)(a) = exp
(− 1

2 ts(a)
)
,

where s : U∗ → R+ is a quadratic form, see [15] for more details on cylindrical Wiener
processes.

Example 3.4. Let ζ be an element in the algebraic dual U∗′, i.e. a linear function
ζ : U∗ → R which is not necessarily continuous. Then

X : U∗ → L0(Ω,F , P ), Xa := ζ(a)

defines a cylindrical random variable. We call its cylindrical distribution µ a cylindrical
Dirac measure in ζ. It follows that

ϕX(a) = ϕµ(a) = eiζ(a) for all a ∈ U∗.

We define the cylindrical Poisson process (L(t) : t > 0) by

L(t)a := ζ(a)n(t) for all t > 0,

where (n(t) : t > 0) is a real valued Poisson process with intensity λ > 0. It turns
out that the cylindrical Poisson process is another example of a weakly cylindrical Lévy
process with characteristic function

ϕL(t)(a) = exp
(
λt

(
eiζ(a) − 1

))
.

Example 3.5. Let (Yk : k ∈ N) be a sequence of cylindrical random variables each
having cylindrical distribution ρ and such that {Yka : k ∈ N} is independent for all
a ∈ U∗. If (n(t) : t > 0) is a real valued Poisson process of intensity λ > 0 which is
independent of {Yka : k ∈ N, a ∈ U∗} then the cylindrical compound Poisson process
(L(t) : t > 0) is defined by

L(t)a :=

{
0, if t = 0,

Y1a + · · ·+ Yn(t)a, else,
for all a ∈ U∗.

The cylindrical compound Poisson process is a weakly cylindrical Lévy process with

ϕL(t)(a) = exp
(

tλ

∫

U

(
ei〈u,a〉 − 1

)
ρ(du)

)
.

Example 3.6. Let ρ be a Lévy measure on R and λ be a positive measure on a set
O ⊆ Rd. In the monograph [12] by Peszat and Zabczyk an impulsive cylindrical process
on L2(O,B(O), λ) is introduced in the following way: let π be the Poisson random
measure on [0,∞)×O×R with intensity measure ds λ(dξ) ρ(dβ). Then for all measurable
functions f : O → R with compact support a random variable is defined by

Z(t)f :=
∫ t

0

∫

O

∫

R
f(ξ)β π̃(ds, dξ, dβ)

in L2(Ω,F , P ) under the simplifying assumption that
∫

R
β2 ρ(dβ) < ∞.
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It turns out that the definition of Z(t) can be extended to all f in L2(O,B(O), λ) so
that Z = (Z(t) : t > 0) is a cylindrical process in the Hilbert space L2(O,B(O), λ).
Moreover, (Z(t)f : t > 0) is a Lévy process for every f ∈ L2(O,B(O), λ) and Z has the
characteristic function

ϕZ(t)(f) = exp

(
t

∫

O

∫

R\{0}

(
eif(ξ)β − 1− if(ξ)β

)
ρ(dβ) λ(dξ)

)
, (3.18)

see Prop. 7.4 in [12].
To consider this example in our setting we set U = L2(O,B(O), λ) and identify U∗ with
U . By the results mentioned above and if we assume weakly independent increments,
Lemma 3.8 tells us that the cylindrical process Z is a weakly cylindrical Lévy process
in accordance with our Definition 3.2. By Corollary 2.7 it follows that there exists a
cylindrical Lévy measure ν on Z(U) such that ν ◦ f−1 is the Lévy measure of (Z(t)f :
t > 0) for all f ∈ U∗. But on the other hand, if we define a measure by

νf : B(R) → [0,∞], νf (B) :=
∫

O

∫

R
1B(βf(ξ)) ρ(dβ)λ(dξ)

we can rewrite (3.18) as

ϕZ(t)(f) = exp

(
t

∫

R\{0}

(
eiβ − 1− iβ

)
vf (dβ)

)

and by the uniqueness of the characteristics of a Levy process we see that vf = v ◦ f−1

for all f ∈ U∗.

Example 3.7. A cylindrical process (L(t) : t > 0) is induced by a stochastic process
(X(t) : t > 0) on U if

L(t)a = 〈X(t), a〉 for all a ∈ U∗.

If X is a Lévy process on U then the induced process L is a weakly cylindrical Lévy
process with the same characteristic function as X.

Our definition of a weakly cylindrical Lévy process is an obvious extension of the def-
inition of a finite-dimensional Lévy processes and is exactly in the spirit of cylindrical
processes. The multidimensional formulation in Definition 3.2 would already be necessary
to define a finite-dimensional Lévy process by this approach and it allows us to conclude
that a weakly cylindrical Lévy process has weakly independent increments. The latter
property is exactly what is needed in addition to a one-dimensional formulation:

Lemma 3.8. For an adapted cylindrical process L = (L(t) : t > 0) the following are
equivalent:

(a) L is a weakly cylindrical Lévy process;

(b) (i) L has weakly independent increments;

(ii) (L(t)a : t > 0) is a Lévy process for all a ∈ U∗.

Proof. We have only to show that (b) implies (a) for which we fix some a1, . . . , an ∈ U∗.
Because (3.13) implies that the characteristic functions satisfy

ϕ(L(t)−L(s))(a1,...,an)(β) = ϕ(L(t)−L(s))(β1a1+···+βnan)(1)
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for all β = (β1, . . . , βn) ∈ Rn the condition (ii) implies that the increments of ((L(t)a1, . . . , L(t)an)) :
t > 0) are stationary. The assumption (i) implies that

(L(t1)− L(t0))ak1 , . . . , (L(tn)− L(tn−1))akn

are independent for all k1, . . . , kn ∈ {1, . . . , n} and all 0 6 t0 < · · · < tn. If follows that
the n-dimensional random variables

(L(t1)− L(t0))(a1, . . . , an), . . . , (L(tn)− L(tn−1))(a1, . . . , an)

are independent which shows the independent increments of (L(t)(a1, . . . , an) : t > 0).
The stochastic continuity follows by the following estimate, where we use | · |n to denote
the Euclidean norm in Rn and c > 0:

P (|(L(t)a1, . . . , L(t)an)|n > c) = P
(|L(t)a1|2 + · · ·+ |L(t)an|2 > c2

)
6

n∑

k=1

P
(
|L(t)ak| > c√

n

)
,

which completes the proof.

Because (L(t)a : t > 0) is a one-dimensional Lévy process, we may take a càdlàg ver-
sion (see e.g. Chapter 2 of [1]). Then for every a ∈ U∗ the one-dimensional Lévy-Itô
decomposition implies P -a.s.

L(t)a = ζat + σaWa(t) +
∫

0<|β|61

β Ña(t, dβ) +
∫

|β|>1

β Na(t, dβ), (3.19)

where ζa ∈ R, σa > 0, (Wa(t) : t > 0) is a real valued standard Wiener process and Na

is the Poisson random measure defined by

Na(t, B) =
∑

06s6t

1B(∆L(s)a) for B ∈ B(R\{0}),

where ∆(f(s)) := f(s)− f(s−) for any càdlàg function f : R→ R. The Poisson random
measure Na gives rise to the Lévy measure νa by

νa(B) := E[Na(1, B)] for B ∈ B(R\{0}).
The compensated Poisson random measure Ña is then defined by

Ña(t, B) := Na(t, B)− tνa(B).

Note, that all terms in the sum on the right hand side of (3.19) are independent for each
fixed a ∈ U∗. Combining with the Lévy-Khintchine formula in Theorem 2.7 yields that

ζa = r(a), σa = s(a) and νa = ν ◦ a−1

for all a ∈ U∗, where r, s and ν are the characteristics associated to the infinitely divisible
cylindrical distribution of L(1).
By using the Lévy-Itô decomposition (3.19) for the one-dimensional projections we define
for each t > 0

W (t) : U∗ → L2(Ω,F , P ), W (t)a := s(a)Wa(t),

M(t) : U∗ → L2(Ω,F , P ), M(t)a :=
∫

0<|β|61

β Ña(t, dβ),

P (t) : U∗ → L0(Ω,F , P ), P (t)a :=
∫

|β|>1

β Na(t, dβ).
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The one-dimensional Lévy-Itô decomposition (3.19) is now of the form

L(t)a = r(a)t + W (t)a + M(t)a + P (t)a for all a ∈ U∗. (3.20)

Theorem 3.9. Let L = (L(t) : t > 0) be a weakly cylindrical Lévy process in U . Then
L satisfies (3.20) (almost surely) where

(W (t) : t > 0) is a weakly cylindrical Wiener process,
(r(·)t + M(t) + P (t) : t > 0) is a cylindrical process.

Proof. By (3.20) we know that

L(t)a = r(a)t + W (t)a + R(t)a for all a ∈ U∗,

where R(t)a = M(t)a + P (t)a. By applying this representation to every component of
the n-dimensional stochastic process (L(t)(a1, . . . , an) : t > 0) for a1, . . . , an ∈ U∗ we
obtain

L(t)(a1, . . . , an) = (r(a1), . . . , r(an))t + (W (t)a1, . . . , W (t)an) + (R(t)a1, . . . , R(t)an).

But on the other hand the n-dimensional Lévy process (L(t)(a1, . . . , an) : t > 0)
also has a Lévy-Itô decomposition where the Gaussian part is an Rn-valued Wiener
process. By uniqueness of the decomposition it follows that the Gaussian part equals
((W (t)a1, . . . , W (t)an) : t > 0) (a.s.) which ensures that the latter is indeed a weakly
cylindrical Wiener process (see the definition in Example 3.3).
Because L and W are cylindrical processes it follows that a 7→ r(a)t + M(t)a + P (t)a is
also linear which completes the proof.

One might expect that the random functions P and M are also cylindrical processes, i.e.
linear mappings. But the following example shows that this is not true in general:

Example 3.10. Let (L(t) : t > 0) be the cylindrical Poisson process from Example 3.4.
We obtain

Na(t, B) =
∑

s∈[0,t]

1B(ζ(a)∆n(s))

= 1B(ζ(a))n(t)

for all a ∈ U∗ and B ∈ B(R\{0}). The image measures ν ◦ a−1 of the cylindrical Lévy
measure ν of L are given by

ν ◦ a−1(B) = E[Na(1, B)] = 1B(ζ(a))λ.

Then we have

P (t)a =
∫

|β|>1

β Na(t, dβ) =
∑

s∈[0,t]

∆L(s)1{|β|>1}(∆L(s))

= ζ(a)
∑

s∈[0,t]

∆n(s)1{|β|>1}(ζ(a)∆n(s))

= ζ(a)n(t)1{|β|>1}(ζ(a)).
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We obtain analogously that

M(t)a =
∫

|β|61

β Ña(t, dβ) =
∫

|β|61

β Na(t, dβ)− t

∫

|β|61

β (ν ◦ a−1)(dβ)

= ζ(a)(n(t)− tλ)1{|β|61}(ζ(a)).

Defining the term r by

r(a) = λ1{|β|61}(ζ(a))

gives the Lévy-Itô decomposition (3.20). But it is easy to see that none of the terms
P (t),M(t) and r is linear because the truncation function

a 7→ 1{|β|61}(ζ(a))

is not linear.
For an arbitrary truncation function ha : R→ R+ which might even depend on a ∈ U∗

a similar calculation shows the non-linearity of the analogous terms.

Example 3.11. Let (L(t) : t > 0) be the cylindrical compound Poisson process intro-
duced in Example 3.5. If we define for a ∈ U∗ a sequence of stopping times recursively
by T a

0 := 0 and T a
n := inf{t > T a

n−1 : |∆L(t)a| > 1} then it follows that
∫

|β|>1

β Na(t, dβ) = J1(a) + · · ·+ JNa(t,Bc
1)(a),

where Bc
1 = {β ∈ R : |β| > 1} and

Jn(a) :=
∫

|β|>1

β Na(T a
n , dβ)−

∫

|β|>1

β Na(T a
n−1, dβ).

We say that a cylindrical Lévy process (L(t), t ≥ 0) is weak order 2 if E |L(t)a|2 < ∞ for
all a ∈ U∗ and t > 0. In this case, we can decompose L according to

L(t)a = r2(a)t + W (t)a + M2(t)a for all a ∈ U∗, (3.21)

where r2(a) = r(a) +
∫
|β|>1

β νa(dβ) and

M2(t) : U∗ → L2(Ω,F , P ), M2(t)a :=
∫

R\{0}
β Ña(t, dβ).

In this representation it turns out that all terms are linear:

Corollary 3.12. Let L = (L(t) : t > 0) be a weakly cylindrical Lévy process of weak
order 2 on U . Then L satisfies (3.21) with

r2 : U∗ → R linear,
(W (t) : t > 0) is a weakly cylindrical Wiener process,
(M2(t)) : t > 0) is a cylindrical process.
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Proof. Let a, b ∈ U∗ and γ ∈ R. Taking expectation in (3.21) yields

r2(γa + b)t = E[L(t)(γa + b)] = γE[L(t)a] + E[L(t)b] = γr2(a)t + r2(b)t.

Thus, r2 is linear and since also W and L in (3.21) are linear it follows that M2 is a
cylindrical process.

But our next example shows that the assumption of finite second moments is not neces-
sary for a “cylindrical” version of the Lévy-Itô decomposition:

Example 3.13. Let (L(t) : t > 0) be a weakly cylindrical Lévy process which is induced
by a Lévy process (X(t) : t > 0) on U , i.e.

L(t)a = 〈X(t), a〉 for all a ∈ U∗, t > 0.

The Lévy process X can be decomposed according to

X(t) = rt + W (t) +
∫

0<‖u‖61

u Ỹ (t, du) +
∫

‖u‖>1

uY (t, du),

where r ∈ U , (W (t) : t > 0) is an U -valued Wiener process and

Y (t, C) =
∑

s∈[0,t]

1C(∆X(s)) for C ∈ B(U),

see [16]. Obviously, the cylindrical Lévy process L is decomposed according to

L(t)a = 〈r, a〉t + 〈W (t), a〉+ 〈
∫

0<‖u‖61

u Ỹ (t, du), a〉+ 〈
∫

‖u‖>1

uY (t, du), a〉,

for all a ∈ U∗. All terms appearing in this decomposition are linear even for a Lévy
process X without existing weak second moments, i.e. with E〈X(1), a〉2 = ∞.
More specificially and for comparison with Example 3.10 let (X(t) : t > 0) be a Poisson
process on U , i.e. X(t) = u0n(t) where u0 ∈ U and (n(t) : t > 0) is a real valued Poisson
process with intensity λ > 0. Then we obtain

∫

0<‖u‖61

u Ỹ (t, du) =

{
0, ‖u0‖ > 1,

(n(t)− λt)u0, ‖u0‖ 6 1.

4 Integration

For the rest of this paper we will always assume that our cylindrical Lévy process
(L(t), t ≥ 0) is weakly càdlàg, i.e. the one-dimensional Lévy processes (L(t)a, t ≥ 0)
are càdlàg for all a ∈ U∗.

4.1 Covariance operator

Let L be a weakly cylindrical Lévy process of weak order 2 with decomposition (3.21).
Then the prescription

M2(t) : U∗ → L2(Ω,F , P ), M2(t)a =
∫

R\{0}
β Ña(t, dβ) (4.22)
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defines a cylindrical process (M2(t) : t > 0) which has weak second moments. Thus, we
can define the covariance operators:

Q2(t) : U∗ → U∗′, (Q2(t)a)(b) = E [(M2(t)a)(M2(t)b)]

= E

[(∫

R\{0}
β Ña(t, dβ)

)(∫

R\{0}
β Ñb(t, dβ)

)]
,

where U∗′ denotes the algebraic dual of U∗. In general one can not assume that the
image Q2(t)a is in the bidual space U∗∗ or even U as one might expect for ordinary
U -valued stochastic processes with weak second moments. We give a counterexample for
that fact after we know that there is no need to consider all times t:

Lemma 4.1. We have Q2(t) = tQ2(1) for all t > 0.

Proof. The characteristic function of the 2-dimensional random variable (M2(t)a,M2(t)b)
satisfies for all β1, β2 ∈ R:

ϕM2(t)a,M2(t)b(β1, β2) = E [exp (i(β1M2(t)a + β2M2(t)b))]
= E [exp(iM2(t)(β1a + β2b))]

= (E [exp(iM2(1)(β1a + β2b))])
t

=
(
ϕM2(1)a,M2(1)b(β1, β2)

)t
.

This relation enables us to calculate

∂

∂β2

∂

∂β1
ϕM2(t)a,M2(t)b(β1, β2)

=
∂

∂β2

∂

∂β1

(
ϕM2(1)a,M2(1)b(β1, β2)

)t

= t(t− 1)
(
ϕM2(1)a,M2(1)b(β1, β2)

)t−2 ∂

∂β2
ϕM2(1)a,M2(1)b(β1, β2)

∂

∂β1
ϕM2(1)a,M2(1)b(β1, β2)

+ t
(
ϕM2(1)a,M2(b)(β1, β2)

)t−1 ∂

∂β2

∂

∂β1
ϕM2(1)a,M2(1)b(β1, β2).

By recalling that

∂

∂β1
ϕM2(1)a,M2(1)b(β1, β2)|β1=0,β2=0 = i E[M2(1)a] = 0,

the representation above of the derivative can be used to obtain

−E[(M2(t)a)(M2(t)b)] =
∂

∂β2

∂

∂β1
ϕM2(t)a,M2(t)b(β1, β2)|β1=0,β2=0

= t
∂

∂β2

∂

∂β1
ϕM2(1)a,M2(1)b(β1, β2)|β1=0,β2=0

= −tE[(M2(1)a)(M2(1)b)],

which completes our proof.

Because of Lemma 4.1 we can simplify our notation and write Q2 for Q2(1).
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Example 4.2. For the cylindrical Poisson process in Example 3.10 we have

M2(t) =
∫

R\{0}
β Ña(t, dβ) = ζ(a)(n(t)− λt) for all a ∈ U∗.

It follows that

(Q2a)(b) = E [(M2(1)a)(M2(1)b)]

= ζ(a)ζ(b)E
[
|n(1)− λ|2

]

= ζ(a)ζ(b)λ.

If we choose ζ discontinuous then Q2(a) is discontinuous and thus Q2(a) /∈ U∗∗.

Definition 4.3. The cylindrical process M2 is called strong if the covariance operator

Q2 : U∗ → U∗′, Q2a(b) = E

[(∫

R\{0}
β Ña(1, dβ)

)(∫

R\{0}
β Ñb(1, dβ)

)]
,

maps to U .

Lemma 4.4. If the cylindrical Lévy measure ν of the cylindrical Lévy process M2 extends
to a Radon measure then M2 is strong.

Proof. It is easily seen that the operator

G : U∗ → L2(U,B(U), ν), Ga = 〈·, a〉1U (·)

is a closed operator and therefore G is continuous. Thus, we have that

(
(Q2a)(b)

)2

6 E |M2(1)a|2 E |M2(1)b|2

= E |M2(1)a|2
∫

R\{0}
β2 (ν ◦ b−1)(dβ)

= E |M2(1)a|2
∫

U

|〈u, b〉|2 ν(du)

6 E |M2(1)a|2 ‖G‖2 ‖b‖2 ,

which completes the proof.

If M2 is strong then the covariance operator Q2 is a symmetric positive linear operator
which maps U∗ to U . A factorisation lemma (see e.g. Proposition III.1.6 (p.152) in [20])
implies that there exists a Hilbert subspace (HQ2 , [·, ·]HQ2

) of U such that

(a) Q2(U∗) is dense in HQ2 ;

(b) for all a, b ∈ U∗ we have: [Q2a,Q2b]HQ2
= 〈Q2a, b〉.

Moreover, if iQ2 denotes the natural embedding of HQ2 into U we have

(c) Q2 = iQ2i
∗
Q2

.

The Hilbert space HQ2 is called the reproducing kernel Hilbert space associated with Q2.
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Example 4.5. We have the following useful formulae:

Cov(M2(1)a, M2(1)b) = 〈Q2a, b〉 = [i∗Q2
a, i∗Q2

b]HQ2
.

In particular, we have

E |M2(1)a|2 =
∥∥i∗Q2

a
∥∥2

HQ2
. (4.23)

Remark 4.6. Assume that (L(t) : t > 0) is a weakly cylindrical Lévy process of weak
order 2 in U with E[L(t)a] = 0 for all a ∈ U∗. Then its decomposition according to
Corollary 3.12 is given by

L(t)a = W (t)a + M2(t)a for all a ∈ U∗,

where W = (W (t) : t > 0) is a weakly cylindrical Wiener process and M2 is of the form
(4.22) with covariance operator Q2. The covariance operator Q1 of W ,

Q1 : U∗ → U∗′, (Q1(a))(b) = E[(W (1)a)(W (1)b)]

may exhibit similar behaviour to Q2 in that it might be discontinuous, see [15] for an
example. Consequently, we call L a strongly cylindrical Lévy process of weak order 2 if
both Q1 and Q2 map to U . By independence of W and M2 it follows that

Q : U∗ → U (Qa)(b) := (Q1a)(b) + (Q2a)(b)

is the covariance operator of L. As before the operator Q can be factorised through a
Hilbert space HQ.

The next result gives some insight into how cylindrical processes might be strong in the
above sense.

Theorem 4.7. Let X : U∗ → L0(Ω,F , P ) be a centralised cylindrical random variable
with weak second moments, i.e.

E[Xa] = 0 and E|Xa|2 < ∞ for all a ∈ U∗.

Let Q : U∗ → U∗′ be the covariance operator of X so that (Qa)b = E[(Xa)(Xb)] for all
a, b ∈ U∗. Then the following are equivalent:

(a) Im(Q) ⊆ U∗∗,

(b) X is continuous from U∗ to L2(Ω,F , P ),

(c) X is continuous from U∗ to L0(Ω,F , P ).

Proof. (a) ⇒ (b). This follows immediately from the fact that (Qa)a = E|Xa|2 for all
a ∈ U∗.
(b) ⇒ (c). This is a standard argument using Chebychev’s inequality.
(c) ⇒ (b). Since X has weak second moments we may regard it as a map from U∗ to
L2(Ω,F , P ). Let (an, n ∈ N) be a sequence in U∗ that converges to a and suppose that
(Xan, n ∈ N) converges to y in L2(Ω,F , P ). Then it also converges to y in probability.
But y = Xa by L0 continuity and the result follows by applying the closed graph theorem.
(b) ⇒ (a). Since (Qa)a = E|Xa|2, it follows that the map a → (Qa)a is continuous from
U∗ to R. Since Q is linear and symmetric we have the polarisation identity

(Qa)b = 1
4 [Q(a + b)(a + b)−Q(a− b)(a− b)].

It follows that the map b → (Qa)b is continuous for all a ∈ U∗. 2

In particular if U is reflexive then L2-continuity of X is a necessary and sufficient condi-
tion for Im(Q) ⊆ U .
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4.2 Representation as a Series

Theorem 4.8. If the cylindrical process M2 of the form (4.22) is strong then there exist
a Hilbert space H with an orthonormal basis (ek)k∈N, F ∈ L(H, U) and uncorrelated real
valued càdlàg Lévy processes (mk)k∈N such that

M2(t)a =
∞∑

k=1

〈Fek, a〉mk(t) in L2(Ω,F , P ) for all a ∈ U∗. (4.24)

Proof. Let Q2 : U∗ → U be the covariance operator of M2(1) and H = HQ2 its repro-
ducing kernel Hilbert space with the inclusion mapping iQ2 : H → U (see the comments
after Lemma 4.4). Because the range of i∗Q2

is dense in H and H is separable there exists
an orthonormal basis (ek)k∈N ⊆Im(i∗Q2

) of H. We choose ak ∈ U∗ such that i∗Q2
ak = ek

for all k ∈ N and define mk(t) := M2(t)ak. Then by using the equation (4.23) we obtain
that

E

∣∣∣∣∣
n∑

k=1

〈iQ2ek, a〉mk(t)−M2(t)a

∣∣∣∣∣

2

= E

∣∣∣∣∣M2(t)

(
n∑

k=1

〈iQ2ek, a〉ak − a

)∣∣∣∣∣

2

= t

∥∥∥∥∥i∗Q2

(
n∑

k=1

〈iQ2ek, a〉ak − a

)∥∥∥∥∥

2

H

= t

∥∥∥∥∥
n∑

k=1

[ek, i∗Q2
a]Hek − i∗Q2

a

∥∥∥∥∥

2

H

→ 0 for n →∞.

Thus, M2 has the required representation and it remains to establish that the Lévy
processes mk := (mk(t) : t > 0) are uncorrelated. For any s 6 t and k, l ∈ N we have:

E[mk(s)ml(t)] = E[M2(s)akM2(t)al]
= E[M2(s)ak(M2(t)al −M2(s)al)] + E[M2(s)akM2(s)al].

The first term is zero by Lemma 3.8 and for the second term we obtain

E[M2(s)akM2(s)al] = s〈Q2ak, al〉 = s[i∗Q2
ak, i∗Q2

al]H = s[ek, el]H = sδk,l.

Hence, mk(s) and ml(t) are uncorrelated.

Remark 4.9. The proof of Theorem 4.8 shows that the real valued Lévy processes mk

can be chosen as

mk(t) =
∫

R\{0}
β Ñak

(t, dβ) for all t > 0,

where Ñak
is the compensated Poisson random measure. Because of the choice of ak the

relation (4.23) yields that

E |mk(t)|2 = tE |M2(1)ak|2 = t
∥∥i∗Q2

ak

∥∥2

HQ2
= t ‖ek‖2HQ2

= t (4.25)

for all k ∈ N implying that
∫

R\{0}
β2(ν ◦ a−1

k )(dβ) = 1. (4.26)
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An interesting question is the reverse implication of Theorem 4.8. Under which condition
on a family (mk)k∈N of real valued Lévy processes can we construct a cylindrical Lévy
process via the sum (4.24)?

Remark 4.10. Let (L(t) : t > 0) be a strongly cylindrical Lévy process with decom-
position L(t) = W (t) + M2(t). By Remark 4.6 the covariance operator Q of L can be
factorised through a Hilbert space HQ and so Theorem 4.8 can be generalised as follows.
There exist an orthonormal basis (ek)k∈N of HQ, F ∈ L(HQ, U) and uncorrelated real
valued Lévy processes (mk)k∈N such that

L(t)a =
∞∑

k=1

〈Fek, a〉mk(t) in L2(Ω,F , P ) for all a ∈ U∗.

As the stochastic processes mk can be choosen as mk(t) = L(t)ak for some ak ∈ U∗ it
follows that for all t ≥ 0, k ∈ N

mk(t) = W (t)ak +
∫

R\{0}
β Ñak

(t, dβ).

4.3 Integration

In this section we introduce a cylindrical integral with respect to the cylindrical process
M2 = (M2(t) : t > 0) in U . Because M2 has weakly independent increments and is of
weak order 2 we can closely follow the analysis for a cylindrical Wiener process as was
considered in [15]. The integrand is a stochastic process with values in L(U, V ), the set
of bounded linear operators from U to V , where V denotes a separable Banach space.
For that purpose we assume for M2 the representation according to Theorem 4.8:

M2(t)a =
∞∑

k=1

〈iQ2ek, a〉mk(t) in L2(Ω,F , P ) for all a ∈ U∗,

where HQ2 is the reproducing kernel Hilbert space of the covariance operator Q2 with
the inclusion mapping iQ2 : HQ2 → U and an orthonormal basis (ek)k∈N of HQ2 . The
real valued Lévy processes (mk(t) : t > 0) are defined by mk(t) = M2(t)ak for some
ak ∈ U∗ with i∗Qak = ek, see Remark 4.9.

Definition 4.11. The set C(U, V ) contains all random variables Φ : [0, T ]×Ω → L(U, V )
such that:

(a) (t, ω) 7→ Φ∗(t, ω)f is B[0, T ]⊗F measurable for all f ∈ V ∗;

(b) (t, ω) 7→ 〈Φ(t, ω)u, f〉 is predictable for all u ∈ U and f ∈ V ∗.

(c)
∫ T

0

E ‖Φ∗(s, ·)f‖2U∗ ds < ∞ for all f ∈ V ∗.

As usual we neglect the dependence of Φ ∈ C(U, V ) on ω and write Φ(s) for Φ(s, ·) as
well as for the dual process Φ∗(s) := Φ∗(s, ·) where Φ∗(s, ω) ∈ L(V, U) denotes the dual
(or adjoint) operator of Φ(s, ω) ∈ L(U, V ).
We define the candidate for a stochastic integral:
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Definition 4.12. For Φ ∈ C(U, V ) we define

It(Φ)f :=
∞∑

k=1

∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds) in L2(Ω,F , P )

for all f ∈ V ∗ and t ∈ [0, T ].

For a predictable mapping h : [0, t]×R×Ω → R the stochastic integral
∫
[0,t]×R\{0} h(s, β) Ña(ds, dβ)

exists if ∫

[0,t]×R\{0}
E

[
(h(s, β))2

]
νa(dβ) ds < ∞,

see for example Chapter 4 in [1]. Thus, the stochastic integral
∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds) =
∫

[0,t]×R\{0}
〈Φ(s)iQ2ek, f〉β Ñak

(ds, dβ)

exists because property (c) in Definition 4.11 together with (4.26) implies
∫

[0,t]×R\{0}
E

[(〈Φ(s)iQ2ek, f〉β)2
]

(ν ◦ a−1
k )(dβ) ds

=
∫

[0,t]

E
[(〈iQ2ek,Φ∗(s)f〉)2

]
ds

∫

R\{0}
β2(ν ◦ a−1

k ) (dβ)

6 ‖iQ2ek‖2
∫ t

0

E ‖Φ∗(s)f‖2 ds < ∞.

Before we establish that the sum of these integrals in Definition 4.12 converges we derive
a simple generalisation of Itô’s isometry for stochastic integrals with respect to compen-
sated Poisson random measures.

Lemma 4.13. Let (hi(t) : t ∈ [0, T ]) for i = 1, 2 be two predictable real valued processes
with

∫ T

0

E |hi(s)|2 ds < ∞

and let m1 := (M2(t)a : t ∈ [0, T ]) and m2 := (M2(t)b : t ∈ [0, T ]) for a, b ∈ U∗. Then
we have

E

[(∫ T

0

h1(s)m1(ds)

)(∫ T

0

h2(s)m2(ds)

)]
= Cov(m1(1), m2(1)) E

[∫ T

0

h1(s)h2(s) ds

]
.

Proof. Let gi, i = 1, 2, be simple processes of the form

gi(s) = ξi,0 1{0}(s) +
n−1∑

k=1

ξi,k 1(tk,tk+1](s) (4.27)

for 0 = t1 6 t2 6 . . . 6 tn = T and a sequence of random variables {ξi,k}k=0,...,n−1 such
that ξi,k is Ftk

-measurable and supk=0,...,n−1 |ξi,k| < C P -a.s. where C > 0. We obtain

E

[(∫ T

0

g1(s) m1(ds)

)(∫ T

0

g2(s) m2(ds)

)]
= Cov(m1(1),m2(1))

n−1∑

k=1

E[ξ1,kξ2,k](tk+1 − tk)

= Cov(m1(1),m2(1))E

[∫ T

0

g1(s)g2(s) ds

]
.
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For the processes hi there exist simple processes (g(n)
i ) of the form (4.27) such that

E

[∫ T

0

(g(n)
i (s)− hi(s))2 ds

]
→ 0 for n →∞. (4.28)

Itô’s isometry implies that there exists a subsequence (nk)k∈N such that
∫ T

0

g
(nk)
i (s)mi(ds) →

∫ T

0

hi(s)mi(ds) P -a.s. for k →∞

for i = 1, 2. By applying Lebesgue’s dominated convergence theorem we obtain

E

[(∫ T

0

g
(nk)
1 (s) m1(ds)

)(∫ T

0

g
(nk)
2 (s) m2(ds)

)]
→ E

[(∫ T

0

h1(s)m1(ds)

)(∫ T

0

h2(s)m2(ds)

)]
.

On the other hand, (4.28) implies that there exists a subsequence (nk)k∈N such that

E[g(nk)
i (s)− hi(s)] → 0 Lebesgue almost everywhere for k →∞.

Lebesgue’s dominated convergence theorem again implies that
∫ T

0

E
[
g
(nk)
1 (s)g(nk)

2 (s)
]

ds →
∫ T

0

E [h1(s)h2(s)] ds for k →∞,

which completes the proof.

Lemma 4.14. It(Φ) : V ∗ → L2(Ω,F , P ) is a well-defined cylindrical random variable
in V which is independent of the representation of L, i.e. of (en)n∈N and (an)n∈N.

Proof. We begin to establish the convergence in L2(Ω,F , P ). For that, let m, n ∈ N and
we define for simplicity h(s) := i∗Q2

Φ∗(s)f . Doob’s maximal inequality and Lemma 4.13
imply

E

∣∣∣∣∣ sup
06t6T

n∑

k=m+1

∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds)

∣∣∣∣∣

2

6 4
n∑

k=m+1

(∫

R\{0}
β2 (ν ◦ a−1

k )(dβ)

) ∫ T

0

E [ek, h(s)]2HQ2
ds

6 4
∞∑

k=m+1

∫ T

0

E
[
[ek, h(s)]HQ2

ek, h(s)
]

HQ2

ds

= 4
∞∑

k=m+1

∞∑

l=m+1

∫ T

0

E
[
[ek, h(s)]HQ2

ek, [el, h(s)]HQ2
el

]
HQ2

ds

= 4
∫ T

0

E ‖(Id−pm)h(s)‖2HQ2
ds,

where pm : HQ2 → HQ2 denotes the projection onto the span of {e1, . . . , em}. Because
‖(Id−pm)h(s)‖2HQ2

→ 0 P -a.s. for m →∞ and

∫ T

0

E ‖(Id−pm)h(s)‖2HQ2
ds 6

∥∥i∗Q2

∥∥2

U∗→HQ2

∫ T

0

E ‖Φ∗(s, ·)f‖2U∗ ds < ∞
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we obtain by Lebesgue’s dominated convergence theorem the convergence in L2(Ω,F , P ).
Because the processes {mk}k∈N are uncorrelated Lemma 4.13 enables us to derive an
analogue of Itô’s isometry:

E

∣∣∣∣∣
∞∑

k=1

∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds)

∣∣∣∣∣

2

=
∞∑

k=1

E

∣∣∣∣
∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds)
∣∣∣∣
2

=
∞∑

k=1

E |mk(1)|2
∫ t

0

E |〈Φ(s)iQ2ek, f〉|2 ds

=
∞∑

k=1

∫ t

0

E
[[

ek, i∗Q2
Φ∗(s)f

]2
HQ2

]
ds

=
∫ t

0

∥∥i∗Q2
Φ∗(s)f

∥∥2

HQ2
ds, (4.29)

where we used (4.23) to obtain

E |mk(1)|2 =
∥∥i∗Q2

ak

∥∥2 = ‖ek‖2 = 1.

To prove the independence of the given representation of M2 let (dl)l∈N be an other
orthonormal basis of HQ2 and wl ∈ U∗ such that i∗Q2

wl = dl and (nl(t) : t > 0) Lévy
processes defined by nl(t) = M2(t)wl. As before we define in L2(Ω,F , P ):

Ĩt(Φ)f :=
∞∑

l=1

∫ t

0

〈Φ(s)iQ2dl, f〉nl(ds) for all f ∈ V ∗.

Lemma 4.13 enables us to compute the covariance:

E
[(

It(Φ)f
)(

Ĩt(Φ)f
)]

=
∞∑

k=1

∞∑

l=1

E

[(∫ t

0

〈Φ(s)iQ2ek, f〉mk(ds)
)(∫ t

0

〈Φ(s)iQ2dl, f〉nl(ds)
)]

=
∞∑

k=1

∞∑

l=1

Cov(mk(1), nl(1))E
[∫ t

0

〈Φ(s)iQ2ek, f〉〈Φ(s)iQ2dl, f〉 ds

]

=
∫ t

0

E

[ ∞∑

k=1

∞∑

l=1

[ek, dl]HQ2

[
ek, i∗Q2

Φ∗(s)f
]
HQ2

[
dl, i

∗
Q2

Φ∗(s)f
]
HQ2

ds

]

=
∫ t

0

E
∥∥i∗Q2

Φ∗(s)f
∥∥2

HQ2
ds.

By using Itô’s isometry (4.29) we obtain

E

[∣∣∣It(Φ)f − Ĩt(Φ)f
∣∣∣
2
]

= E
[
|It(Φ)f |2

]
+ E

[ ∣∣∣Ĩt(Φ)f
∣∣∣
2 ]
− 2E

[(
It(Φ)f

)(
Ĩt(Φ)f

)]

= 0,

which proves the independence of It(Φ) on (ek)k∈N and (ak)k∈N. The linearity of It(Φ)
is obvious and hence the proof is complete.
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Our next definition is not very surprising:

Definition 4.15. For Φ ∈ C(U, V ) we call the cylindrical random variable

∫ t

0

Φ(s) dM2(s) := It(Φ)

a cylindrical stochastic integral with respect to M2.

In the proof of Lemma 4.14 we already derived Itô’s isometry:

E

∣∣∣∣
(∫ t

0

Φ(s) dM2(s)
)

f

∣∣∣∣
2

=
∫ t

0

E
∥∥i∗Q2

Φ∗(s)f
∥∥2

HQ2
ds

for all f ∈ V ∗.

Remark 4.16. If a strongly cylindrical Lévy process L is of the form L(t) = W (t)+M2(t)
one can utilise the series representation in Remark 4.10 to define a stochastic integral
with respect to L by the same approach as in this subsection. But on the other hand we
can follow [2] and define

∫
Φ(s) dL(s) :=

∫
Φ(s) dW (s) +

∫
Φ(s) dM2(s),

where the stochastic integral with respect to the cylindrical Wiener process W is defined
analogously, see [15] for details. This approach allows even more flexibility because one
can choose different integrands Φ1 and Φ2 for the two different integrals on the right
hand side.

5 Cylindrical Ornstein-Uhlenbeck process

Let V be a separable Banach space and let (M2(t) : t > 0) be a strongly cylindrical Lévy
process of the form (4.22) on a separable Banach space U with covariance operator Q2

and cylindrical Lévy measure ν. We consider the Cauchy problem

dY (t) = AY (t) dt + C dM2(t) for all t > 0,

Y (0) = Y0,
(5.30)

where A : dom(A) ⊆ V → V is the infinitesimal generator of a strongly continuous
semigroup (S(t))t>0 on V and C : U → V is a linear, bounded operator. The initial
condition is given by a cylindrical random variable Y0 : V ∗ → L0(Ω,F , P ). In addition,
we assume that Y0 is continuous when L0(Ω,F , P ) is equipped with the topology of
convergence in probability.

Remark 5.1. In this section we focus on the random noise M2 for simplicity. But
because of Remark 4.16 our results in this section on the Cauchy problem (5.30) can
easily be generalised to the Cauchy problem of the form

dY (t) = AY (t) dt + C1 dW (t) + C2 dM2(t),

where (W (t) : t > 0) is a strongly cylindrical Wiener process.
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To find an appropriate meaning of a solution of (5.30) let T : dom(T ) ⊆ U → V be a
closed densely defined linear operator acting with dual operator T ∗ : dom(T ∗) ⊆ V ∗ →
U∗. If X is a cylindrical random variable in U then we obtain a linear map TX with
domain dom(T ∗) by the prescription

TX : dom(T ∗) ⊆ V ∗ → L0(Ω,F , P ), (TX)a := X(T ∗a).

If dom(T ∗) = V ∗ then TX defines a new cylindrical random variable in V . If µX denotes
the cylindrical distribution of X then the cylindrical distribution µTX of TX is given by

µTX(Z(a1, . . . , an;B)) = µX(Z(T ∗a1, . . . , T
∗an; B)),

for all a1, . . . , an ∈ V ∗, B ∈ B(Rn) and n ∈ N. By applying this definition the operator
C appearing in the Cauchy problem (5.30) defines a new cylindrical process CM2 :=
(CM2(t) : t > 0) in V by

CM2(t)a = M2(t)(C∗a) for all a ∈ V ∗.

The cylindrical process CM2 is a cylindrical Lévy process in V with covariance operator
CQ2C

∗ and cylindrical Lévy measure νCM2 given by

νCM2(Z(a1, . . . , an; B)) = νM2(Z(C∗a1, . . . , C
∗an; B)).

Definition 5.2. An adapted, cylindrical process (Y (t) : t > 0) in V is called a weak
cylindrical solution of (5.30) if

Y (t)a = Y0a +
∫ t

0

AY (s)a ds + (CM2(t))a for all a ∈ dom(A∗).

Definition 5.2 extends the concept of a solution of stochastic Cauchy problems on a
Hilbert space or a Banach space driven by a Lévy process to the cylindrical situation, see
[13] for the case of a Hilbert space and [16] for the case of a Banach space. The following
example illustrates this generalisation.

Example 5.3. Let Ñ be a compensated Poisson random measure in U . Then a weak
solution of

dZ(t) = AZ(t) dt +
∫

0<‖u‖
C dÑ(dt, du) for all t > 0,

Z(0) = Z0

(5.31)

is a stochastic process Z = (Z(t) : t > 0) in V such that P-a.s.

〈Z(t), a〉 = 〈Z(0), a〉+
∫ t

0

〈Z(s), A∗a〉 ds +
∫

[0,t]×U

〈Cu, a〉 Ñ(ds, du) (5.32)

for all a ∈ dom(A∗) and t > 0. These kinds of equations in Hilbert spaces are considered
in [2] and [12] and in Banach spaces in [16].
If we define a cylindrical Lévy process (M2(t) : t > 0) by

M2(t)a :=
∫

U

〈u, a〉 Ñ(t, du),
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then it follows that the induced cylindrical process (Y (t) : t > 0) with Y (t)a = 〈Z(t), a〉
where Z is a weak solution of (5.31) is a weak cylindrical solution of

dY (t) = AY (t) dt + C dM2(t),
Y (0) = Y0

in the sense of Definition 5.2 with Y0a := 〈Z0, a〉.
A Cauchy problem of the form (5.31) might not have a solution in the traditional sense.
But a cylindrical solution always exists:

Theorem 5.4. For every Cauchy problem of the form (5.30) there exists a unique weak
cylindrical solution (Y (t) : t > 0) which is given by

Y (t) = S(t)Y0 +
∫ t

0

S(t− s)C dM2(s) for all t > 0.

Proof. Existence We define the stochastic convolution to be the cylindrical random vari-
able

X(t) :=
∫ t

0

S(t− v)C dM2(v) for all t > 0.

To ensure that the cylindrical stochastic integral exists we need only to check that the
integrand satisfies the condition (c) in Definition 4.11 which follows from

∫ t

0

‖S∗(t− v)a‖2V ∗ dv =
∫ t

0

‖S∗(v)a‖2V ∗ dv < ∞,

because of the exponential estimate of the growth of semigroups, i.e.

‖S(t)‖ 6 Keγt for all t > 0, (5.33)

where K ∈ (0,∞) and γ ∈ R are constants, and the fact that ‖S(t)‖V = ‖S∗(t)‖V ∗ for
each t ≥ 0.
By using standard properties of strongly continuous semigroups we calculate for a ∈ V ∗

that
∫ t

0

AX(r)a dr =
∫ t

0

X(r)(A∗a) dr

=
∫ t

0

(∫ r

0

S(r − v)C dM2(v)
)

(A∗a) dr

=
∞∑

k=1

∫ t

0

∫ r

0

〈S(r − v)CiQ2ek, A∗a〉mk(dv) dr

=
∞∑

k=1

∫ t

0

∫ t

r

〈S(r − v)CiQ2ek, A∗a〉 dr mk(dv)

=
∞∑

k=1

∫ t

0

〈CiQ2ek, S∗(t− v)a− a〉mk(dv)

= X(t)a−M2(t)(C∗a), (5.34)
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where we have used the stochastic Fubini theorem for Poisson stochastic integrals (see
Theorem 5 in [2]), the application of which is justified by the estimate (5.33). For
convenience we define

Z(t) := S(t)Y0 for all t > 0.

Proposition 1.2.2 in [21] guarantees that the adjoint semigroup satisfies
∫ t

0

S∗(r)A∗a dr = S∗(t)a− a for all a ∈ dom(A∗),

in the sense of Bochner integrals.Thus, we have
∫ t

0

AZ(r)a dr =
∫ t

0

Y0(S∗(r)A∗a) dr = Y0

∫ t

0

S∗(r)A∗a dr = Z(t)a− Y0a.

The assumption on the continuity of the initial condition Y0 enables the change of the
integration and the application of the initial condition Y0. Together with (5.34) this
completes our proof of existence.

Uniqueness. This follows by standard arguments as in [13] pp. 122-3.

The cylindrical process (Y (t) : t > 0) given in Theorem 5.4 is called a cylindrical
Ornstein-Uhlenbeck process.
For all t > 0, let Ct(Ω, V ) be the linear space of all adapted cylindrical random variables
in V which are Ft-measurable. A family {Zs,t : 0 6 s 6 t} of mappings

Zs,t : Cs(Ω, V ) → Ct(Ω, V )

is called a cylindrical flow if Zt,t = Id and for each 0 6 r 6 s 6 t

Zr,t = Zs,t ◦ Zr,s P -a.s.

In relation to the cylindrical Ornstein-Uhlenbeck process in Theorem 5.4 we define

Zs,tX := S(t− s)X +
∫ t

s

S(t− r)C dM2(r) for X ∈ Cs(Ω, V ) (5.35)

and for all 0 6 s 6 t.

Proposition 5.5.

(a) The family {Zs,t : 0 6 s 6 t} as given by (5.35) is a cylindrical flow.

(b) For all a1, . . . , an ∈ U∗ the stochastic process (Y (t)(a1, . . . , an) : t > 0) in Rn is a
time-homogeneous Markov process.

Proof. (a) This is established by essentially the same argument as that given in the proof
of Proposition 4.1 of [2].
(b) For each 0 ≤ s ≤ t, a(n) = (a1, . . . , an) ∈ V ∗n, f ∈ Bb(Rn), n ∈ N, we have

E
[
f(Y (t)(a1, . . . , an))|Fs

]

= E
[
f(Z0,tY (0)a1, . . . , Z0,tY (0)an)|Fs

]

= E
[
f
(
(Zs,t ◦ Z0,s)Y (0)a1, . . . , (Zs,t ◦ Z0,s)Y (0)an

)|Fs

]

= E
[
f(S(t− s)Z0,sY (0)(a1, . . . , an) +

(∫ t

s

S(t− u)C dM2(u)
)

(a1, . . . , an))|Fs

]
.

28



Now since the random vector
(∫ t

s
S(t− u)C dM2(u)

)
a(n) is measurable with respect to

σ ({M2(v)a−M2(u)a; s ≤ u ≤ v ≤ t, a ∈ V ∗}) we can use standard arguments for prov-
ing the Markov property for SDEs driven by Rn-valued Lévy processes (see e.g. section
6.4.2 in [1]) to deduce that

E
[
f(Y (t)(a1, . . . , an))|Fs

]
= E

[
f(Y (t)(a1, . . . , an))|Y (s)(a1, . . . , an)

]
,

which completes the proof.

Although the Markov process (Y (t) a(n) : t > 0) is a projection of a cylindrical Ornstein-
Uhlenbeck process it is not in general an Ornstein-Uhlenbeck process in Rn in its own
right. Indeed, if this were to be the case we would expect to be able to find for every
a(n) ∈ V ∗n a matrix Qa(n) ∈ Rn×n and a Lévy process (la(n)(t) : t > 0) in Rn such that

Y (t) a(n) = e
tQa(n) Y (0) a(n) +

(∫ t

0

e
(t−s)Qa(n) C dla(n)(s)

)
.

That this does not hold in general is shown by the following example:

Example 5.6. On the Banach space V = Lp(R), p > 1 we define the translation
semigroup (S(t))t>0 by (S(t)f)x = f(x + t) for f ∈ V . For an arbitrary real valued
random variable ξ ∈ L0(Ω,F , P ) we define the initial condition by Y0g := g(ξ) for all
g ∈ Lq(R) where q−1 + p−1 = 1. Then we obtain

(S(t)Y0)g = Y0S
∗(t)g = g(ξ − t) for every g ∈ Lq(R).

If (Y (t)g : t > 0) were an Ornstein-Uhlenbeck process it follows that there exists λg ∈ R
and a random variable ζg such that

g(ξ − t) = eλgtζg P -a.s. (5.36)

To see that the last line cannot be satisfied take g = 1(0,1) and take ξ to be a Bernoulli
random variable. Then we have

g(ξ − t) = 1(0,1)(ξ − t) = ξ 1(0,1)(t),

which cannot be of the form (5.36).

It follows from the Markov property that for each a(n) ∈ V ∗n there exists a semigroup of
linear operators (Ta(n)(t) : t > 0) defined for each f ∈ Bb(Rn) by

Ta(n)(t)f(β) = E[f(Y (t) a(n))|Y (0) a(n) = β].

The semigroup is of cylindrical Mehler type in that for all b ∈ V ,

Ta(n)(t)f(πa(n)b) =
∫

V

f(πS∗(t) a(n)
b + πa(n)y) ρt(dy), (5.37)

where ρt is the cylindrical law of
∫ t

0
S(t− s)C dM2(s).

We say that the cylindrical Ornstein-Uhlenbeck process Y has an invariant cylindrical
measure µ if for all a(n) = (a1, . . . , an) ∈ V ∗n and f ∈ Bb(Rn) we have

∫

Rn

Ta(n)(t)f(β) (µ ◦ π−1
a(n)

)(dβ) =
∫

Rn

f(β) (µ ◦ π−1
a(n)

)(dβ) for all t > 0, (5.38)
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or equivalently
∫

V

Ta(n)(t)f(πa(n)b) µ(db) =
∫

V

f(πa(n)b) µ(db) for all t > 0.

By combining (5.38) with (5.37) we deduce that a cylindrical measure µ is an invariant
measure for (Y (t) : t > 0) if and only if it is self-decomposable in the sense that

µ ◦ π−1
a(n)

= µ ◦ π−1
S∗(t) a(n)

∗ ρt ◦ π−1
a(n)

for all t > 0, a(n) ∈ V ∗n.

Proposition 5.7.

(a) For each a ∈ V ∗ the following are equivalent:

(i) ρt ◦ a−1 converges weakly as t →∞;

(ii)
(∫ t

0

S(r)C dM2(r)
)

a converges in distribution as t →∞.

(b) If ρt ◦ a−1 converges weakly for every a ∈ V ∗ then the prescription

ρ∞ : Z(V ) → [0, 1], ρ∞(Z(a1, . . . , an; B)) := wk- lim
t→∞

ρt ◦ π−1
a1,...,an

(B)

defines an invariant cylindrical measure ρ∞ for Y . Moreover, if µ is another such
cylindrical measure then

µ ◦ π−1
a(n)

=
(
ρ∞ ◦ π−1

a(n)

)
∗

(
γ ◦ π−1

a(n)

)
,

where γ is a cylindrical measure such that γ ◦ π−1
a(n)

= γ ◦ π−1
S∗(t) a(n)

for all t > 0.

(c) If an invariant measure exists then it is unique if (S(t) : t > 0) is stable, i.e.
limt→∞ S(t)x = 0 for all x ∈ V .

Proof. The arguments of Lemma 3.1, Proposition 3.2 and Corollary 6.2 in [5] can be
easily adapted to our situation.

In order to derive a simple sufficient condition implying the existence of a unique invariant
cylindrical measure we assume that the semigroup (S(t) : t > 0) is exponentially stable,
i.e. there exists R > 1, λ > 0 such that ‖S(t)‖ 6 Re−λt for all t > 0.

Corollary 5.8.
If (S(t) : t > 0) is exponentially stable then there exists a unique invariant cylindrical
measure.

Proof. For every t1 > t2 > 0 and a ∈ V ∗ the Itô’s isometry (4.29) implies that

E

∣∣∣∣
(∫ t1

0

S(r)C dM2(r)
)

a−
(∫ t2

0

S(r)C dM2(r)
)

a

∣∣∣∣
2

=
∫ t1

t2

∥∥i∗Q2
C∗S∗(r)a

∥∥2

HQ2
dr

6 ‖iQ2‖2 ‖C‖2 ‖a‖2
∫ t1

t2

‖S(r)‖2 dr

→ 0 as t1, t2 →∞,
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because of the exponential stability. Consequently, the integral
(∫ t

0
S(r)C dM2(r)

)
a

converges in mean square and Proposition 5.7 completes the proof.

An obvious and important question is whether a cylindrical Ornstein-Uhlenbeck process
is induced by a stochastic process in V . We give a straightforward result in this direction,
within the Hilbert space setting:

Lemma 5.9. Let V be a separable Hilbert space and assume that

∞∑

k=1

∫ t

0

‖S(r)Cikek‖2 dr < ∞ for all t > 0.

If the initial condition Y0 is induced by a random variable in V then the cylindrical weak
solution Y of (5.30) is induced by a stochastic process in V .

Proof. For all m < n

E

∥∥∥∥∥
n∑

k=m+1

∫ t

0

S(t− r)CiQ2ek mk(dr)

∥∥∥∥∥

2

=
n∑

k=m+1

∫ t

0

‖S(r)CiQ2ek‖2 dr → 0 as m,n →∞,

and it follows by completeness that there exists a V -valued random variable Z in L2(Ω,F , P ; V )
such that

Z =
∞∑

k=1

∫ t

0

S(t− r)CiQ2ek mk(dr) in L2(Ω,F , P ; V ),

which completes the proof by Theorem 5.4.
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[4] Z. Brzeźniak and J. Zabczyk. Regularity of Ornstein-Uhlenbeck processes driven by
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