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1 (i) Given two probability measures P1 and P2 on a measurable space (S,Σ) and
a number 0 ≤ c ≤ 1, de�ne P (A) = cP1(A) + (1 − c)P2(A) for all A ∈ Σ.
Show that P is also a probability measure on (S,Σ). (4 marks)

(ii) (a) Let (S,Σ,m) be a measure space with m a �nite measure, that is
m(S) < ∞. Let An, n ≥ 1 be an increasing sequence of subsets of
S, that is An ⊆ An+1 for all n ≥ 1. De�ne A := ∪∞n=1An. Show that

m(A) = lim
n→∞

m(An).

(HINT: Write ∪∞n=1An as a disjoint union.) (4 marks)

(b) Let (S,Σ,m) be a measure space with m a �nite measure, that is
m(S) <∞. Let Bn, n ≥ 1 be a decreasing sequence of subsets of S,
that is Bn+1 ⊆ Bn for all n ≥ 1. De�ne B := ∩∞n=1Bn. Show that

m(B) = lim
n→∞

m(Bn).

(HINT: Consider An = S −Bn and use part (a).) (5 marks)

(c) Give a counterexample to show that the above identity does not
hold in general when the sets Bn are decreasing and m is an in�nite

measure. (2 marks)

(iii) Consider the set S = {1, 2, 3, 4, 5}. Let A = {1, 2, 3} and B = {3, 4, 5}.
Write down the smallest σ-algebra Σ of S which contains A and B.

(5 marks)

(iv) Recall that the Borel σ-algebra B(R) is the smallest σ-algebra of R that
contains open intervals (a, b), −∞ ≤ a < b ≤ ∞. Show that B(R) contains
sets of the form [a, b] and {a}, where −∞ < a < b <∞. (5 marks)

(v) For any set A ⊆ R de�ne −A := {−x : x ∈ A}. Consider the collection

C = {A ∈ B(R) : −A ∈ B(R)}.

(a) Show that C is a σ-algebra. (5 marks)

(b) Show that C = B(R). (3 marks)
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2 (i) Consider the sequence an, n ≥ 1 given by

an =


1− 1

n
, if n is odd

−1 +
1

n
, if n is even

(a) Compute lim sup
n→∞

an and lim inf
n→∞

an. (3 marks)

(b) Does lim
n→∞

anan+1 exist? If so, what is the limit? (2 marks)

(ii) Let (S,Σ) be a measurable space and let f, g : S → R be two measurable
functions.

(a) Show that f + 1 is a measurable function, where 1 : S → R is the
function which is identically one, 1(s) = 1 for all s ∈ S.

(3 marks)

(b) Show that {f > g} ∈ Σ.
(HINT: If f(x) > g(x) then there must be a rational point between
f(x) and g(x)) (4 marks)

(iii) Give an example of a measurable space (S,Σ) and a function f : S → R
such that |f | is measurable but f is not. (4 marks)

(iv) Let S be a set with A ⊆ S and consider the σ-algebra Σ = {∅, A,Ac, S}.
Show that a function f : S → R is measurable if and only if it is constant
on A and also constant on Ac.
(HINT: For one direction consider f−1({a}) for a ∈ R.) (5 marks)

(v) Let (S,Σ,m) be a measure space and f : S → R be an integrable function.

(a) Suppose m(f 6= 0) = 0. Show that

∫
S

fdm = 0.

(HINT: Write f = f · 1{f=0} + f · 1{f 6=0}) (4 marks)

(b) Compute

∫ 1

0

1Q(x) dx. (1 mark)

(c) Suppose

∫
S

fdm = 0. Is it true that m(f 6= 0) = 0? Prove it if it is

true or else provide a counterexample if it is false. (3 marks)

(vi) Consider ([0, 2],B([0, 2]), λ) where λ is the Lebesgue measure on [0, 2]. Let
f : [0, 2] → R be a nonnegative integrable function such that f(x) ≤ 3 for

x ≤ 1 and

∫ 2

1

f(x) dx = 2. Show that (4 marks)

λ (x : f(x) ≥ 4) ≤ 1

2
.
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3 (i) State the Dominated Convergence theorem and use it to �nd the limit

lim
n→∞

∫
R

[
1− e−|x|/n

]
· e−|x| dx.

(5 marks)

(ii) Let (S,Σ,m) be a measure space. The Monotone Convergence theorem

states that for any monotonic increasing sequence of non negative measur-
able functions fn from S to R we have∫

S

lim
n→∞

fn dm = lim
n→∞

∫
S

fn dm.

Give a counterexample to show that the above identity does not hold if the
functions fn are monotonic decreasing. (3 marks)

(iii) Let (S,Σ,m) be a measure space. Let (fn) be a sequence of non-negative
measurable functions for which fn ≤ f for all n ∈ N where f is integrable.
Prove that

lim sup
n→∞

∫
S

fn dm ≤
∫
S

lim sup
n→∞

fn dm.

(HINT: Apply Fatou's lemma to f − fn.) (5 marks)

(iv) Let (Ω,F , P ) be a probability space and let X be a random variable that
takes positive integer values.

(a) Deduce that X =
∞∑
i=1

1{X≥i}.

(HINT: Consider the event {X(ω) = k}) (3 marks)

(b) Show that E(X) =
∞∑
i=1

P (X ≥ i). (3 marks)

(v) Prove that in any in�nite sequence of independent (fair) coin tosses, the
pattern HTHHT appears in�nitely often, where H represents heads and
T represents tails. (4 marks)

(vi) Consider the probability space ([0, 1],B([0, 1]), λ) where λ is the uniform
measure on [0, 1]. Show that the random variables Xn = n·1(0,n−1) converge
almost surely to X ≡ 0 but Xn does not converge in mean square to X.

(4 marks)

(vii) Let (Ω,F , P ) be a probability space and let X1, X2, · · · be a sequence of
i.i.d. random variables with mean 0 and variance 1. Let Sn = X1 + X2 +
· · ·+Xn, n ≥ 1 and consider the event An = {Sn ∈ [1, 2]}. Show that

E
[(
S2
n+1 − (n+ 1)

)
· 1An

]
= E

[(
S2
n − n

)
· 1An

]
(6 marks)
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4 (i) Let (S1,Σ1,m1) and (S2,Σ2,m2) be measure spaces. Recall that for E ⊆
S1 × S2 and x ∈ S1 the x-slice of E is

Ex := {y ∈ S2 : (x, y) ∈ E}.

Let E,F ⊆ S1 × S2 and x ∈ S1. Show that

(a) (E ∩ F )x = Ex ∩ Fx. (3 marks)

(b) (Ec)x = (Ex)c (3 marks)

(c) (∪∞n=1En)x = ∪∞n=1(En)x where En, n ≥ 1 is a sequence of subsets of
S1 × S2. (3 marks)

(ii) State the version of Fubini's theorem for nonnegative measurable functions.
(4 marks)

(iii) Let (Ω,F , P ) be a probability space and let X be a nonnegative random
variable with 0 ≤ X ≤ 1. Consider the probability space ([0, 1],B([0, 1]), λ).
Consider the product space Ω× [0, 1] with product σ-algebra and product
probability P × λ.
(a) Show that the set G is in the product σ-algebra, where

G = {(ω, y) : y ≤ X(ω)}.

(HINT: Consider Gc and note that if X(ω) < y then there must be
a rational number between X(ω) and y) (5 marks)

(b) Show that P × λ(G) = E(X). (5 marks)

(iv) (a) Let (S,Σ) be a measurable space and let m1 and m2 be two �nite
measures on it with the property m1(S) = m2(S). Show that the
collection

C := {A ∈ Σ : m1(A) = m2(A)}

is a λ-system. (5 marks)

(b) Show that the Lebesgue measure is the only measure m on the Borel
sets of the interval [0, 1] with the property that for all subintervals
J , m(J) = length of J .
(HINT: Use Dynkin's π − λ theorem) (5 marks)

End of Question Paper
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