
Chapter 6

You Cannot be Series

The limiting process was victorious. For the limit is an indispensable concept,
whose importance is not affected by the acceptance or rejection of the infinitely

small.

Hermann Weyl “Philosophy of Mathematics and Natural Science”

6.1 What are Series?

Sequences are the fundamental objects in the study of limits. In this chapter
we will meet a very special type of sequence whose limit (when it exists) is the
best meaning we can give to the intuitive idea of an “infinite sum of numbers”.
Let’s be specific. Suppose we are given a sequence (an). Our primary focus in
this chapter will not be on the sequence (an) but on a related sequence which
we will call (sn). It is defined as follows:

s1 = a1
s2 = a1 + a2
s3 = a1 + a2 + a3,

and more generally

sn = a1 + a2 + · · ·+ an−1 + an.

The sequence (sn) is called a series (or infinite series) and the term sn is
often called the nth partial sum of the series. The goal of this chapter will be
to investigate when the series (sn) has a limit. In this way we can try to give
meaning to “infinite sums” which we might write informally as

1 +
1

2
+

1

3
+

1

4
+ · · · , (6.1.1)

1− 1 + 1− 1 + 1− 1 + · · · , (6.1.2)
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62 CHAPTER 6. YOU CANNOT BE SERIES

but beware that the meaning that we’ll eventually give to expressions like
this (in those cases where it is indeed possible) will not be the literal one of
an infinite number of additions (what can that mean?) but as the limit of a
sequence. Sequences that arise in this way turn up throughout mathematics
and its applications so understanding them is very important.

6.2 The Sigma Notation

Before we can start taking limits of series we need to develop some useful no-
tation for finite sums that will simplify our approach to expressions like (6.1.1)
and (6.1.2)1 .

Let’s suppose that we are given the following ten whole numbers: a1 =
3, a2 = −7, a3 = 5, a4 = 16, a5 = −1, a6 = 3, a7 = 10, a8 = 14, a9 = −2, a10 = 0.
We can easily calculate their sum

a1 + a2 + · · ·+ a10 = 41, (6.2.3)

but there is a more compact way of writing the left hand side which is widely
used by mathematicians and those who apply mathematics. It is called the
“sigma notation” because it utilises the Greek letter Σ (pronounced “sigma”)
which is capital S in English (and S should be thought of here as standing for
“sum”). Using this notation we write the left hand side of (6.2.3) as

10∑
i=1

ai.

Now if you haven’t seen it before, this may appear to be a complex piece of
symbolism - but don’t despair. We’ll unpick it slowly and we’ll read bottom up.
The i = 1 tells us that the first term in our addition is a1, then the Σ comes
into play and tells us that we must add a2 to a1 and then a3 to a1 + a2 and
then a4 to a1+a2+a3 and then...but when do we stop? Well go to the top of Σ
and read the number 10. That tells you that a10 is the last number you should
add, and that’s it. The notation is very flexible. For example you also have

8∑
i=1

ai = a1 + a2 + · · ·+ a8 = 43,

9∑
i=2

ai = a2 + a3 + · · ·+ a9 = 38,

7∑
i=6

ai = a6 + a7 = 13.

1Readers who already know about this notation may want to omit this section.
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The following results are easily derived and quite useful. We will use them
without further comment in the sequel. If a1, . . . , an, b1, . . . bn and c are arbitrary
real numbers then

n∑
i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi,

n∑
i=1

cai = c
n∑

i=1

ai

The sigma notation is particularly useful when we have a sequence (an) and we
want to add as far as the general term an to obtain the nth partial sum sn. We
can now write

sn =
n∑

i=1

ai.

Notice that the letter i here is only playing the role of a marker here in telling
us where to start and stop adding. It is called a “dummy index” and the value
of sn is unchanged if it is replaced by a different letter throughout - e.g.

n∑
i=1

ai =
n∑

j=1

aj .

It’s worth pointing out one special case that often confuses students. Suppose
that ai = k takes the same value for all i. Then

n∑
i=1

ai =
n∑

i=1

k = k + k + · · ·+ k︸ ︷︷ ︸
n times

= nk.

Our main concern in this chapter is with infinite rather than finite series
but before we return to the main topic lets look at an interesting problem
that (and this may be an apocryphal story) was given to one of the greatest
mathematicians the world has even seen, Carl Friedrich Gauss (1777-1855)2

when he was a schoolboy. The story goes that the teacher wanted to concentrate
on some urgent task and so he asked the whole class to calculate the sum of the
first 100 natural numbers so that he could work in peace while they struggled
with this fiendish problem. Apparently after 5 minutes Gauss produced the
correct answer 5050. How did he get this? It is speculated that he noticed the
following clever pattern by writing the numbers 1 to 50 in a row and then the
numbers 51 to 100 in reverse order underneath:

1 2 3 4 · · · 49 50
100 99 98 87 · · · 52 51

Now each column adds to 101 - but there are 50 columns and so the answer

is 50 × 101 = 5050. In sigma notation, Gauss calculated
100∑
i=1

i. A natural

2See e.g. http://202.38.126.65/navigate/math/history/Mathematicians/Gauss.html
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generalisation is to seek a formula for

n∑
i=1

i, i.e. the sum of the first n natural

numbers. If n = 2m is an even number you can use exactly the same technique
as Gauss to show that the answer is m(2m+1) or 1

2n(n+1). The same is true
when n = 2m+ 1 is odd since (using the fact that we know the answer when n
is even),

2m+1∑
i=1

i =
2m∑
i=1

i+ (2m+ 1)

= m(2m+ 1) + (2m+ 1)

= (m+ 1)(2m+ 1)

=
1

2
n(n+ 1).

So we’ve shown that for every natural number n

n∑
i=1

i =
1

2
n(n+ 1). (6.2.4)

At this stage its worth briefly considering more general finite sums which are
obtained from summing all the numbers on the list a, a+d, a+2d, . . . , a+(n−1)d.
Note that there are n numbers in this list which are obtained from the first
term a by repeatedly adding the common difference d. Such a list is called an
arithmetic progression and we can find the sum S of the first n terms by using
a slight variation of Gauss’ technique. So we write

S = a + (a+ d) + (a+ 2d) + · · · + [a+ (n− 1)d]
S = [a+ (n− 1)d] + [a+ (n− 2)d] + [a+ (n− 3)]d + · · · + a
Now add these two expressions, noting that each of the n columns on the

right hand side sums to 2a+ (n− 1)d to get

2S = n(2a+ (n− 1)d),

and so

S = n

[
a+

1

2
(n− 1)d

]
.

If you take a = d = 1, you can check that you get another proof of (6.2.4).

Before we return to our main topic, I can’t resist introducing the triangular
numbers. This is the sequence (an) defined by a1 = 1, a2 = 1 + 2 = 3, a3 =
1 + 2 + 3 = 6, a4 = 1 + 2 + 3 + 4 = 10, etc so the nth term is an = 1

2n(n + 1).
Figure 6.1 below should help you see why these numbers are called “triangular”3

Figure 6.1 Representation of some triangular numbers.

3see also http://en.wikipedia.org/wiki/Triangular number.
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It is a fact that if you add successive triangular numbers you always get a
perfect square so e.g.

1 + 3 = 4 = 22

3 + 6 = 9 = 32

6 + 10 = 16 = 42.

It is easy to prove that this holds in general by using (6.2.4). Indeed we have
that the sum of the nth and (n+ 1)th triangular numbers is

an + an+1 =
1

2
n(n+ 1) +

1

2
(n+ 1)(n+ 2)

=
1

2
(n+ 1)(n+ n+ 2)

= (n+ 1)2.

6.3 Convergence of Series

Let’s return to the main topic of this chapter. We are given a sequence (an) and
we form the associated sequence of partial sums (sn) where sn =

∑n
i=1 ai. Now

suppose that (sn) converges to some real number l in the sense of Chapter 4,
i.e. for any ϵ > 0 there exists a natural number n0 such that whenever n > n0

we have |sn − l| < ϵ. In this case we call l the sum of the series. In some
ways this is a bad name as l is not a sum in the usual sense of the word, it is
a limit of sums, but this is standard terminology and we will have to live with

it. There is also a special notation for l. We write it as
∞∑
i=1

ai. Again from one

point of view, this is a bad notation as it makes it look like an infinite process
of addition, but on the other hand it is pretty natural once you get used to it
and it works well from the following point of view:

l =
∞∑
i=1

ai = lim
n→∞

n∑
i=1

ai = lim
n→∞

sn
4.

Just to be absolutely clear that we understand what
∑∞

i=1 ai is I’ll remind you
that (if it exists) it is the real number that has the property that given any
ϵ > 0 there exists a natural number n0 such that whenever n > n0 we have
|
∑n

i=1 ai −
∑∞

i=1 ai| < ϵ. When we consider this, we might conclude that “sum
of a series” is not a bad name as we can get arbitrarily close to the limit by
adding a large enough number of terms - so adding more terms beyond the N
that takes you to within ϵ of the limit isn’t going to give you much more if ϵ is
sufficiently small! Indeed if the sum of the series exists, it is common for even
the most rigorous mathematicians to write

4Just to confuse you, many textbooks write
∑∞

i=1 ai as
∑∞

n=1 an which is perfectly OK
as i and n are dummy indices, but which might be a little strange at first because of the role
we have given to n. For this reason I’m sticking to i, at least in this chapter where the ideas
are new to you!
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∞∑
i=1

ai = a1 + a2 + a3 + · · · (6.3.5)

as if we really do have an infinite process of addition going on! There’s no
harm in doing this so long as you appreciate that (6.3.5) is nothing more than
a suggestive notation. The truth is in the ϵs and Ns of the limit concept.

If (sn) diverges to +∞ we sometimes use the notation

∞∑
i=1

ai = ∞. Similarly

we write
∞∑
i=1

ai = −∞ when (sn) diverges to −∞. Also (and I hope this termi-

nology won’t confuse anyone) if I write that
n∑

i=1

ai (or even
∞∑
i=1

ai) converges (or

diverges) this is sometimes just a convenient shorthand for the convergence (or

divergence) of (sn) where sn =
n∑

i=1

ai. So when we talk of convergent or (diver-

gent) series. we really mean the convergence (or divergence) of the associated
sequence of partial sums.

Now what about some examples? To make things simpler at the beginning,
for the next two sections we’ll focus on nonnegative series, i.e. those for which
ai ≥ 0 for each i - so for example (6.1.1) is included, but not (6.1.2).

6.4 Nonnegative Series

OK - so far all we’ve really done is give a definition and some new notation. Now
it’s time to get down to the serious business of real mathematics. I’ll remind
you that for the next few sections we’re going to focus on sequences (an) where
each an ≥ 0. We consider the partial sums (sn). Our first observation is that
this is a monotonic increasing sequence as

sn+1 − sn =
n+1∑
i=1

ai −
n∑

i=1

ai =
n∑

i=1

ai + an+1 −
n∑

i=1

ai = an+1 ≥ 0,

and so sn+1 ≥ sn for all n. It then follows from Corollary 5.2.1 that (sn) either
converges (to its supremum) or diverges to +∞. Now we’ll study some examples.

We’ve seen already that

n∑
i=1

i =
1

2
n(n + 1) and this clearly diverges to +∞. If

you look at higher powers of i then their partial sums are even larger and so we

should expect divergence again, e.g.
n∑

i=1

i2 = 1 + 22 + 32 + · · · + n2 > n2 > n

and since (n) diverges, then so does
n∑

i=1

i2. Indeed this is a consequence of
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Theorem 4.1.3. A similar argument applies to

n∑
i=1

im where m > 1 is any real

number. What about m = 0, well here we have
n∑

i=1

i0 =
n∑

i=1

1 = n which again

diverges. Finally if 0 < m < 1, we have im ≥ 1 and so
n∑

i=1

im ≥
n∑

i=1

1 = n which

also diverges. So we can conclude that
n∑

i=1

im diverges to +∞ for all m ≥ 0.

What happens when m < 0? Lets start by looking at the case m = −1. This
is the famous harmonic series which is obtained by summing the terms of the
harmonic sequence that we discussed in section 4.1:5

n∑
i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

A reasonable conjecture might be that this series converges as limn→∞
1
n = 0

so as n gets very large the difference between sn and sn+1 is getting smaller
and smaller. Indeed if we calculate the first few terms we find that s1 = 1, s2 =
3
2 , s3 = 11

6 , s4 = 25
12 , s5 = 137

60 , . . ., so we might well believe that the sum of the
series is a number between 2 and 3. But (as we should know by now), looking
at the first five terms (or even the first billion) may not be a helpful guide to

understanding convergence. In fact

n∑
i=1

1

i
diverges. To see why this is so, we’ll

employ a clever argument that collects terms together in powers of 2. We look
at6

2n∑
i=1

1

i
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

)
+ · · · · · · · · ·

+

(
1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n

)
. . . (∗)

Now observe that

1

3
+

1

4
>

1

4
+

1

4
=

1

2
,

5For the relationship with the notion of harmonic in music see e.g.
http://en.wikipedia.org/wiki/Harmonic series (music)

6This argument is due to Nicole Oresme (1323?-1382), a Parisian thinker who eventually
became Bishop of Lisieux - see e.g. http://en.wikipedia.org/wiki/Nicole Oresme
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1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2
,

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
> 8.

1

16
=

1

2
,

and we continue this argument until we get to

1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n
=

1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n−1 + 2n−1
.

There are 2n−1 terms in this general sum and each term is greater than 1
2n

so

1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n
> 2n−1.

1

2n
=

1

2
.

If we count the number of brackets on the right hand side of (*) and also
include the terms 1 and 1

2 , we find that we have (n + 1) terms altogether and
we have seen that n of these terms exceed 1

2 .

We conclude that
2n∑
i=1

1

i
> 1+n.

1

2
= 1+

n

2
and we can see from this that the

series diverges. Indeed given any K > 0 we can find n0 such that 1+ n
2 > K for

all n > n0 (just take n0 to be the smallest natural number larger than 2(K−1))

and then
n∑

i=1

1

i
> K for all n > 2n0 .

At this stage you might be getting the feeling that all series are divergent.
You can rest assured that that is far from the case. There are plenty of conver-
gent series around as we’ll soon see. The next series on our list that we should

consider is
n∑

i=1

1

i2
but we need a few more tools before we can investigate that

one. In fact we’ll need to know about the related series
n∑

i=1

1

i(i+ 1)
and this

will furnish our first example of a convergent series.

Example 6.1:

n∑
i=1

1

i(i+ 1)

To show this series converges we’ll first find a neat formula for the nth partial
sum. To begin with, you should check by cross-multiplication that

1

i(i+ 1)
=

1

i
− 1

i+ 1
.
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Next we write

n∑
i=1

1

i(i+ 1)
as a “telescopic sum”7:

n∑
i=1

1

i(i+ 1)
=

n∑
i=1

(
1

i
− 1

i+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

+

(
1

n− 2
− 1

n− 1

)
+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
,

after cancellation. So we conclude that

n∑
i=1

1

i(i+ 1)
= 1− 1

n+ 1
.

However we know that the sequence whose nth term is 1
n+1 converges to 0

and so we see that

∞∑
i=1

1

i(i+ 1)
= lim

n→∞

n∑
i=1

1

i(i+ 1)
= 1− lim

n→∞

1

n+ 1
= 1.

This is our first successful encounter with a convergent series so we should
allow ourselves a quick pause for appreciation. In this case we also have an
example where the sum of the series is explicitly known. This is in fact quite
rare. In most cases where we can show that a series converges we will not know
the limit explicitly.

At this stage it is worth thinking a little bit about the relationship between
the sequences (an) and (sn) from the point of view of convergence. The last two

examples we’ve considered were
n∑

i=1

1

i
and

n∑
i=1

1

i(i+ 1)
. In the first of these we

have an = 1
n and we know that lim

n→∞

1

n
= 0, but we’ve shown that (sn) diverges.

In the second example, an =
1

n(n+ 1)
and again we have lim

n→∞

1

n(n+ 1)
= 0,

but in this case (sn) converges as we’ve just seen. It’s time for a theorem:

Theorem 6.4.1 If
n∑

i=1

ai converges then so does the sequence (an) and limn→∞ an =

0.

7So called because the series can be compressed into a simple form by cancellation. The
analogy is with the collapse of an old-fashioned telescope.
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Proof. Suppose that limn→∞ sn = l then we also have limn→∞ sn−1 = l
(think about it.) Now since

an = sn − sn−1,

for all n ≥ 2, we can use the algebra of limits, firstly to deduce that (an)
converges and secondly to find that

lim
n→∞

an = lim
n→∞

sn − lim
n→∞

sn−1

= l − l = 0,

and we are done. �
Its important to appreciate what Theorem 6.4.1 is really telling us. It says

that if (sn) converges then it follows that (an) converges to zero. It should not be
confused with the converse statement: “if (an) converges to zero then it follows
that (sn) converges” which is false - and the case an = 1

n provides a counter-
example. On the other hand, one of the most useful applications of Theorem
6.4.1 is to prove that a series diverges for if we use the fact that a statement
is logically equivalent to its contrapositive8, we see that Theorem 6.4.1 also

tells us that if (an) does not converge to zero then
n∑

i=1

ai diverges e.g. we see

immediately that
n∑

i=1

i

i+ 100
diverges since lim

n→∞

n

n+ 100
= lim

n→∞

1

1 + 100
n

= 1

by algebra of limits.
By the way, we said that we’d only consider non-negative series in this

section, but you can check that Theorem 6.4.1 holds without this constraint.

6.5 The Comparison Test

The theory of series is full of tests for convergence which are various tricks that
have been developed over the years for showing that a series is convergent or
divergent. We’ll meet a small number of these in this chapter. In fact we can’t

proceed further in our quest to show convergence of
n∑

i=1

1

i2
without being able

to use the comparison test and we’ll present this as a theorem. The proof of (1)
is particularly sweet as it makes use of old friends from earlier chapters.

Theorem 6.5.1 (The Comparison Test) Suppose that (an) and (bn) are se-
quences with 0 ≤ an ≤ bn for all n. Then

1. if
n∑

i=1

bi converges then so does
n∑

i=1

ai,

8The contrapositive of “If P then Q.” is “If not Q then not P.”
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2. if

n∑
i=1

ai diverges then so does

n∑
i=1

bi.

Proof. Throughout this proof we’ll write sn =
n∑

i=1

ai (as usual) and tn =

n∑
i=1

bi.

1. We are given that the sequence (tn) converges and so it is bounded by
Theorem 4.2.1. In particular it is bounded above and since each tn is
positive, it follows that there exists K > 0 such that tn = |tn| ≤ K for all
n. Now since each ai ≤ bi we have for all n that

sn =

n∑
i=1

ai ≤
n∑

i=1

bi = tn ≤ K,

and so the sequence (sn) is bounded above. We have already pointed out
that (sn) is monotonic increasing and so we can apply Theorem 5.2.1 (1)
to conclude that (sn) converges as required.

2. This really just a special case of Theorem 4.1.3 but since I didn’t prove
that result I will do so for this one. The sequence (sn) diverges so given
any L > 0 there exists a natural number n0 such that sn > L. But since
each bi ≥ ai we can argue as in (1) to deduce that tn ≥ sn > L and hence
(tn) diverges.

�
We’ll now (as promised) apply the comparison test to show that

n∑
i=1

1

i2
con-

verges.

Example 6.2
n∑

i=1

1

i2

We know from Example 6.1 that
n∑

i=1

1

i(i+ 1)
converges and so by the algebra

of limits so does 2
n∑

i=1

1

i(i+ 1)
=

n∑
i=1

2

i(i+ 1)
.

Now

2

i(i+ 1)
− 1

i2
=

1

i

[
2

i+ 1
− 1

i

]
=

1

i

[
2i− (i+ 1)

i(i+ 1)

]
=

i− 1

i2(i+ 1)
≥ 0.
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So if we take ai =
1

i2
and bi =

2

i(i+ 1)
, we have 0 ≤ ai ≤ bi and so by Theorem

6.5.1 (1),

n∑
i=1

1

i2
converges as advertised.

We’ve now shown that

n∑
i=1

1

i2
converges. But is it possible to find an exact

value for the sum of this series? The problem was first posed by Jacob Bernoulli
(1654-1705).9 As Bernoulli was living in Basle, Switzerland at the time the

problem of finding a real number k such that

∞∑
i=1

1

i2
= k became known as the

“Basle problem”. The problem was solved by one of the greatest mathematicians
of all time Leonhard Euler10 (1706-90) in 1735. He showed that

∞∑
i=1

1

i2
=

π2

6
,

so that k = π2

6 which is 1.6449 to four decimal places. This connection between
the sums of inverses of squares of natural numbers and π - the universal constant
which is the ratio of the circumference of any circle to its diameter is really
beautiful and may appear a little mysterious. To give Euler’s original proof
goes beyond the scope of this book.11 If you take a university level course that
teaches you the idea of a Fourier series then there is a very nice succinct proof
which uses that concept in a delightful way.

Now that we have the comparison test up our sleeves then we can make

much more progress in our goal to fully understand when
n∑

i=1

1

ir
converges for

various values of r.

Example 6.3

n∑
i=1

1

ir
for r > 2.

All the series of this type converge. To see this its enough to notice that if
i is any natural number then whenever r > 2

ir ≥ i2.

Now by (L5) we have
1

ir
≤ 1

i2
,

9He was one of three brothers who all made important mathematical contributions. Fur-
thermore the sons and grandsons of this remarkable trio produced another five mathematicians
- see e.g. http://en.wikipedia.org/wiki/Bernoulli family. Be aware that Jacob is sometimes
called by his Anglicised name James and should not be confused with his younger brother
Johann (also called John.)

10See http://en.wikipedia.org/wiki/Leonhard Euler
11The best account of this that I’ve come across is in Jeffrey Stopple’s superb textbook “A

Primer of Number Theory”, Cambridge University Press (2003). See Chapter 14 for more
about this book.
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and we can immediately apply the comparison test (Theorem 6.5.1 (1)) to de-

duce that
n∑

i=1

1

ir
converges for r > 2.

Example 6.4

n∑
i=1

1

ir
for 0 < r < 1.

In this case we have ir < i for all natural numbers i and so again by (L5),
1
i < 1

ir . Now apply the comparison test in the form Theorem 6.5.1 (2) to deduce

that

n∑
i=1

1

ir
diverges for 0 < r < 1.

I’ve already told you how Euler found an exact formula for

∞∑
i=1

1

i2
which

featured π2. He also discovered exact formulae for

∞∑
i=1

1

ir
where r is an even

number and these are all expressed in terms of πr. I won’t write down the exact
formulae here as they are more complicated then the case r = 2. We’ll postpone
that to the next chapter as there is a fascinating connection with the number e
which we’re going to study there.12 Remarkably, very little is still known about
∞∑
i=1

1

ir
in the case where r is an odd number (r ≥ 3). We had to wait until 1978

for Roger Apéry (1916-94) to prove that
∞∑
i=1

1

i3
is an irrational number!

To complete the story of
n∑

i=1

nr where r is any real number we should look

at
n∑

i=1

1

ir
for 1 < r < 2. We’ll need a new technique before we do that and this

is the theme of the next section.

Before we do that, let’s look at one more interesting series. We’ve shown that
∞∑
i=1

1

i
diverges. Now we’ll consider the sum of all reciprocals of the square-free

integers:

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, . . . ,

i.e. those natural numbers that can never have a perfect square as a factor.

It seems that this is a “smaller sum” so it may be possible that it converges.
We’ll denote the generic square-free integer as isf where the suffix sf stands for

12If you can’t wait, try looking in section 6.2 of Stopple’s book that is cited above.
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“square-free” and consider

∞∑
isf=1

1

isf
.13 Remember that in chapter 1, we showed

that any natural number n can be written as n = isfm
2 where m ≤ n is a

natural number.

Theorem 6.5.2
∞∑

isf=1

1

isf
diverges.

Proof. The result more or less follows from the inequality

n∑
i=1

1

i
≤

 n∑
isf=1

1

isf

( n∑
m=1

1

m2

)
.

To see that this holds you need only use the fact that for any 1 ≤ i ≤ n,
1

i
=

1

isf

1

m2
where m ≤ n and isf ≤ n, so

1

i
certainly appears in the product of

the sums on the right hand side - and that is enough. We’ve seen that

∞∑
m=1

1

m2

converges (to a positive number which is the supremum of the sequence of partial
sums) and so we can make the right hand side of the last inequality larger to
obtain

n∑
i=1

1

i
≤

 n∑
isf=1

1

isf

( ∞∑
m=1

1

m2

)
= k

n∑
isf=1

1

isf
,

where k =
∞∑

m=1

1

m2
(which we saw earlier is in fact equal to π2

6 .)

From this and Theorem 4.1.3 we see that the divergence of
∞∑

isf=1

1

isf
follows

from that of
∞∑
i=1

1

i
. �

Corollary 6.5.1 There are infinitely many square-free integers.

Proof. Suppose by way of contradiction that there was a largest square-free
integer Isf . Then

∞∑
isf=1

1

isf
= 1 +

1

2
+

1

3
+ · · ·+ 1

Isf
,

13It may be that a better notation for this is
∑

isf<∞

1

isf
which we define to mean precisely

limn→∞
∑

isf<n

1

isf
.
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and this is a finite sum of numbers. This contradicts the result of Theorem
6.5.2. �.

Since all prime numbers are square-free you may wonder whether the sum

of all
1

p
(where p is prime) converges or diverges. We’ll come back to settle that

question in Chapter 8.

6.6 Geometric Series

In this section we’ll look at series such as

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · , (6.6.6)

6 + 18 + 54 + 162 + 486 + · · · (6.6.7)

Both of these are examples of geometric series, i.e. they are of the form
∞∑
i=0

ari = a + ar + ar2 + ar3 + · · ·. The number a is (surprise, surprise) called

the first term and r is called the common ratio.14 So in (6.6.6) a = 1 and
r = 1

2 . In (6.6.7), a = 6 and r = 3. You might have guessed that (6.6.7)
diverges and have speculated that (6.6.6) may well converge. To investigate
this in the general case we’ll first find a general formula for the nth partial sum

sn =
n∑

i=0

arn.15 This finite series is sometimes called a geometric progression.

To find the general formula we first note that if r = 1 then

sn = a+ a+ · · ·+ a = (n+ 1)a. (6.6.8)

Now assume that r ̸= 1 to find that

sn = a+ ar + ar2 + · · ·+ arn. (6.6.9)

Then multiply both sides of (6.6.9) by r to obtain

rsn = ar + ar2 + ar3 + · · ·+ arn + arn+1. (6.6.10)

Notice that all the terms on the right hand sides of (6.6.9) and (6.6.10) are
common to both equations except the first term a in (6.6.9) and the last term
arn+1 in (6.6.10). If we subtract (6.6.10) from (6.6.9) we obtain

(1− r)sn = a− arn+1,

14To understand why the word “geometric” is used here go to the section “Relationship to
geometry and Euclid’s work” in http://en.wikipedia.org/wiki/Geometric progression.

15Note that we start at i = 0 here instead of i = 1 but this introduces no new difficulties in
finding limits. If you want to you can even systematically replace

∑n
i=0 ar

i with
∑n+1

i=1 ari−1.
However do bear in mind that sn is now the sum of the first n+ 1 terms.
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and since r ̸= 1 it is legitimate to divide both sides by r to get the formula
we are seeking:

sn =
a(1− rn+1)

1− r
. (6.6.11)

For example, you can use this to quickly calculate the sum of the first 10
terms in (6.6.6) by spotting that a = 1 and r = 1

2 in this case. So we want

s9 =
1.
(
1−

(
1
2

)10)
1− 1

2

= 2− 1

29
= 2− 1

512
=

1023

512
.

You can use a similar argument to deduce that sn = 2− 1
2n and this sequence

clearly converges to 2.
More generally if |r| < 1 (so −1 < r < 1) then by Example 4.2 we have

limn→∞ rn = 0. Hence if we apply the algebra of limits in (6.6.11) we see that
the geometric series converges and

∞∑
i=0

arn =
a

1− r
. (6.6.12)

In fact it is easy to check using (6.6.8) and (6.6.11) that the geometric series
converges for no other value of r. Indeed if r ≥ 1 it diverges to +∞, if r = −1
it oscillates finitely between 0 and a and if r < −1 it oscillates infinitely.

Now we are going to use the geometric series as a tool in proving that
n∑

i=1

1

ir

converges for 1 < r < 2. We’ll use a similar trick to the one we employed to

prove that
n∑

i=1

1

i
diverges. We’ll write the natural numbers in the form

20, 20 + 1, 21, 21 + 1, 22, 22 + 1, 22 + 2, 23 − 1, 23, . . .

Now consider all the terms written in this form that lie between 2i−1 and
2i−1 (including these two “end-points”) where i is an arbitrary natural number.
There are exactly 2i−1 such numbers (think about it - and look at the case i = 3
from the list above for inspiration if necessary). Now define

bi =
1

(2i−1)r
+

1

(2i−1 + 1)r
+

1

(2i−1 + 2)r
+ · · ·+ 1

(2i − 1)r
.

Since
1

(2i−1)r
is the largest number which appears on the right hand side we

get

bi ≤ 2i−1.
1

(2i−1)r
=

(
1

2i−1

)r−1

=

(
1

2r−1

)i−1

,

and so
n∑

i=0

bi ≤
n∑

i=0

(
1

2r−1

)i−1

.
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But the series on the right hand side is a geometric one having first term
1 and common ratio 1

2r−1 < 1 since r > 1. So this geometric series converges

and hence by the comparison test so does
n∑

i=0

bi. But this series is nothing but

n∑
i=1

1

ir
rewritten in a clever way that involves powers of 2. And that’s it.

We have now completed the story of
∑n

i=1 i
r where r is a real number. We

have shown that the series diverges if r ≤ 1 and converges if r > 1. The
“parameter” r plays a similar role here to the temperature of substances like
water. Water is frozen solid for temperatures below 0 degrees celsius but at that
temperature it melts to form a liquid and this is called a “phase transition” in
physics. If we keep on increasing temperature then the water stays liquid until
we get to 100 degrees celsius when it changes to a gas and this is a second phase
transition. By analogy we can regard the value r = 1 as indicating a phase

transition between the regions where the series
n∑

i=1

ir diverges and converges

(respectively). This analogy may not be as far-fetched as it seems as analysis
plays an important role in the mathematical modelling of real phase transitions.

6.7 The Ratio Test

In the last section we saw the benefits of the comparison test for proving conver-
gence of series. Although it is a wonderful thing it is by no means the only tool
that we need for playing the series game and indeed there are many important

series such as

∞∑
i=1

1

i!
where it doesn’t help at all.16 In this section we’ll develop

another useful test called the ratio test.17 Before we prove this, it will be helpful
to make some general remarks about infinite series.

Suppose that we have a finite series
n∑

i=1

ai where each ai ≥ 0. We can split

the sum at any intermediate point

n∑
i=1

ai =
m∑
i=1

ai +
n∑

i=m+1

ai, (6.7.13)

Can we do the same for infinite sums? Suppose that

n∑
i=1

ai converges to

16Remember that i! = i(i− 1)(i− 2) · · · 3.2.1
17Sometimes called d’Alembert’s ratio test in honour of the French

thinker Jean d’Alembert (1717-83) who was the first to publish it - see
http://en.wikipedia.org/wiki/Jean le Rond d’Alembert
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l. Now consider the sequence whose nth term is

n∑
i=m+1

ai. This series also

converges by the comparison test as we have (using the notation of Theorem
6.5.1) bi ≤ ai for each i where bi = 0 if 1 ≤ i ≤ m and bi = ai if i ≥ m+ 1. Its
then natural to define

∞∑
i=m+1

ai = lim
n→∞

n∑
i=m+1

ai.

Applying the algebra of limits in (6.7.13) we find that

∞∑
i=m+1

ai = lim
n→∞

(
n∑

i=1

ai −
m∑
i=1

ai

)

=
∞∑
i=1

ai −
m∑
i=1

ai,

and so

∞∑
i=1

ai =
m∑
i=1

ai +
∞∑

i=m+1

ai. (6.7.14)

Notice from this that to show
∞∑
i=1

ai converges its enough to prove that

∞∑
i=m+1

ai converges for any fixed m which can be as large as we like. This makes

sense from an intuitive point of view as it’s the “tail” of the series, i.e. it’s value
beyond a certain point, that determines convergence.

We’re now ready to describe the ratio test and as usual we’ll state the test
as a theorem. The proof of this gives us another opportunity to appreciate the
value of geometric series.

Theorem 6.7.1 (The Ratio Test) Suppose that (an) is a sequence of positive

real numbers for which limn→∞
an+1

an
= l, then

•
n∑

i=1

ai converges if l < 1.

•
n∑

i=1

ai diverges if l > 1.

• If l = 1 the test is inconclusive and the series may converge or diverge.

Proof. First suppose that l < 1 and notice that we can then find an ϵ > 0
such that

l + ϵ < 1 . . . (i),
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indeed no matter how close to 1 the real number l may get, there is always
some gap and choosing ϵ = 1

2 (1− l), for example, will only fill half of that gap.

Now lets go back to the definition of the limit of a sequence. Since
(

an+1

an

)
converges to l and given the value of ϵ that we’ve just chosen to satisfy (i), we

know there exists a natural number n0 such that if n > n0 then
∣∣∣an+1

an
− l
∣∣∣ < ϵ

i.e.

l − ϵ <
an+1

an
< l + ϵ . . . (ii)

Now we can write each

an =
an

an−1

an−1

an−2
· · · an0+2

an0+1
an0+1.

Each ratio on the right hand side satisfies (ii) and so we have

an < (l + ϵ)n−n0−1an0+1,

since there are precisely n − n0 − 1 ratios on the right hand side. Now an0+1

is a fixed number and
∑∞

n=n0+1(l + ϵ)n−n0−1an0+1 is a geometric series with
first term an0+1 and common ratio l + ϵ. This converges by (i) and so by the
comparison test (bearing in mind (6.7.14))

∑∞
n=1 an converges.

Now suppose that l > 1 and choose ϵ = l−1 in the left hand side inequality of
(ii). Then we can find m0 such that if m > m0 then am+1

am
> 1, i.e. am+1 > am.

But then we cannot possibly have limm→∞ am = 0 and so
∞∑

n=1

an diverges by

Theorem 6.4.1.18

To see that anything can happen when l = 1 consider how
∑n

i=1 ai behaves
as n → ∞ in the two cases an = 1

n and an = 1
n2 . �

Note that Theorem 6.7.1 assumes implicity that we are dealing with a series

for which lim
n→∞

an+1

an
exists. If it doesn’t then we cannot apply the ratio test (at

least not in this form of it, see Exercise 6.11 for a more general version.)

Example 6.5
∞∑
i=1

xi

i!

We’ll use the ratio test to examine the convergence of the series

n∑
i=1

xn

i!
where

x is an arbitrary positive number. This series will play an important role in the
next chapter when we’ll be learning about the irrational number that is denoted
by e. The ratio test is easy to apply in this case, we have

an =
xn

n!
, an+1 =

xn+1

(n+ 1)!
,

18Recall that I told you that this result would be helpful in proving divergence.
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and so

an+1

an
=

xn+1

(n+ 1)!
.
n!

xn
=

x.n!

(n+ 1)n!
=

x

n+ 1
→ 0 as n → ∞,

irrespective of the value of x. So l = 0 < 1 and we conclude that the series
converges for all values of x. This proof has given us a lot. Not only do we know

that
n∑

i=1

1

i!
converges (in fact, as we’ll see in Chapter 7, the sum of the series is

the special number e) but also that, e.g.
n∑

i=1

102039i

i!
converges.

6.8 General Infinite Series

So far in this chapter we’ve only considered infinite series that have non-negative

terms. But what about more general series such as
n∑

i=1

(−1)i or
n∑

i=1

xi

i!
where x

is an arbitrary real number? Let’s focus on the first of these. If we group the
terms as

(−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

then it seems to be converging to zero but if we write it as

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

it looks like it converges to 1. We should take this as a “health warning” that
dealing with negative numbers in infinite series might lead to headaches. We’ll
come back to regrouping terms in series later in this chapter. Now let’s focus
on the general picture. We are interested in the convergence (or otherwise) of

a series
n∑

i=1

ai where (an) is an arbitrary sequence of real numbers, so we’ve

dropped the constraint that these numbers are all non-negative. Its a shame
to lose all the knowledge we’ve gained in the early part of this chapter so lets

introduce a link to that material. To each general series
n∑

i=1

ai we can associate

the non-negative series
n∑

i=1

|ai|. Here’s a key definition. The series
n∑

i=1

ai is

said to be absolutely convergent if

n∑
i=1

|ai| converges. So for example the series

n∑
i=1

(−1)i+1 1

i2
is absolutely convergent since

n∑
i=1

|(−1)i+1 1

i2
| =

n∑
i=1

1

i2
converges.

Now all we’ve done so far is make a definition. The next theorem tells us why
this is useful.
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Theorem 6.8.1 Any absolutely convergent series is convergent.

Proof. We want to show that the sequence whose nth term is sn =
n∑

i=1

ai

converges. Suppose that it is absolutely convergent. Then the sequence (tn)

converges where tn =

n∑
i=1

|ai|. Now each |ai| ≥ ai and |ai| ≥ −ai (recall section

3.4) and so

0 ≤ ai + |ai| ≤ 2|ai|.

Now by algebra of limits 2

n∑
i=1

|ai| converges and hence by the comparison test

so does un =
∑n

i=1(ai + |ai|). Then by algebra of limits we have convergence of
sn = un − tn and our job is done! �

By Theorem 6.8.1 we see immediately that

n∑
i=1

(−1)i+1 1

i2
converges. Next

we have an important example that picks up an earlier theme.

Example 6.6
∞∑
i=1

xi

i!

We can now show that this series converges when x is an arbitrary real
number. Indeed we’ve already shown this when x ≥ 0. If x < 0 then

n∑
i=1

∣∣∣∣xi

i!

∣∣∣∣ = n∑
i=1

|xi|
i!

=

n∑
i=1

|x|i

i!

and since |x| ≥ 0 this last series converges. So
n∑

i=1

xi

i!
is absolutely convergent

and hence is convergent by Theorem 6.8.1.

Both of the tests for convergence that we’ve met can be souped up into tests
for general series. I’ll state these but if you want proofs, you’ll have to provide
the details (see Exercise 6.12.) Both cases are quite straightforward to deal
with.

The Comparison Test - general case. If (an) is an arbitrary sequence of real
numbers and (bn) is a sequence of non-negative numbers so that |an| < bn for

all n then if
n∑

i=1

bn converges so does
n∑

i=1

ai.

The Ratio Test - general case. If (an) is a sequence of real numbers for which

limn→∞

∣∣∣an+1

an

∣∣∣ = l, then if l < 1,
n∑

i=1

ai converges, if l > 1,
n∑

i=1

ai diverges and if

l = 1 then the test is inconclusive.
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6.9 Conditional Convergence

We’ve seen in the last section that every absolutely convergent series is con-
vergent. In this section we’ll focus on the convergence of series that may not

be absolutely convergent. For example consider the series
n∑

i=1

(−1)i+1 1

i
which

begins 1− 1
2 +

1
3 −

1
4 +

1
5 −· · ·. This series is certainly not absolutely convergent

as we’ve already shown that the harmonic series
n∑

i=1

1

i
diverges. But the partial

sums of this series will certainly be smaller than those of the harmonic series so
perhaps there is a chance that it will converge? Before we investigate further
we’ll need another definition. If (an) is a sequence of real numbers for which
n∑

i=1

ai converges but

n∑
i=1

|ai| diverges then the series

n∑
i=1

ai is said to be condi-

tionally convergent. We’ve not met any conditionally convergent series yet but
the next theorem, which gives us another test for convergence, will give us the
tool we need to find them. This convergence test is named after Gottfried Leib-
niz19 (1646-1716) who was a renaissance man, par excellence! In his well known
book “Men of Mathematics” that gives a series of short biographies of famous
(male!) mathematicians, E.T.Bell writes “Mathematics was one of the many
fields in which Leibniz showed conspicuous genius: law, religion, statecraft, his-
tory, logic, metaphysics and speculative philosophy all owe to him contributions,
any one of which would have secured his fame and preserved his memory.”

Theorem 6.9.1 (Leibniz’ Test) Let (an) be a sequence of non-negative num-
bers that is

(a) monotonic decreasing, (b) convergent to zero.

In this case the series
n∑

i=1

(−1)i+1ai converges.

Proof. Let sn =
n∑

i=1

(−1)i+1ai. Let n be even so that n = 2m for some m.

Then

s2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m).

It follows that

s2m+2 = s2(m+1) = s2m + (a2m+1 − a2m+2) ≥ s2m,

since (an) is monotonic decreasing. This shows that the sequence (s2n) is mono-
tonic increasing. It is also bounded above since

19See http://en.wikipedia.org/wiki/Gottfried Leibniz
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s2m = a1 − (a2 − a3)− (a3 − a4)− . . .− (a2m−2 − a2m−1)− a2m

≤ a1.

Here we’ve used the fact that the sequence (an) is non-negative so that a2m ≥ 0
and that it is also monotonic decreasing, so each bracket is non-negative. We
can now apply Theorem 5.2.1 (1) to conclude that (s2m) converges and we define
s = limm→∞ s2m. We now know that even partial sums converge. What about
the odd ones? Well by algebra of limits we have

lim
m→∞

s2m+1 = lim
m→∞

s2m + lim
m→∞

a2m+1 = s+ 0 = s.

We’ve shown that limm→∞ s2m = s and limm→∞ s2m+1 = s. To prove the
theorem we need to show that the full sequence (sn) converges. It seems feasible
that if it does then limn→∞ sn = s and this is what we’ll now prove. Its about
time we had an ϵ and an n0 again, so let’s fix ϵ > 0. Then from what has been
proved above there exists n0 such that if m > n0 then |s2m − s| < ϵ and there
exists n1 such that if m > n1 then |s2m+1 − s| < ϵ. Now let n > max(n0, n1).
Then either n is even and so n = 2m for some m or n is odd in which case
n = 2m+ 1. In either case we have |sn − s| < ϵ and the result is proved. �

It is very easy to apply Leibniz’ test to see immediately that
n∑

i=1

(−1)i+1 1

i

converges and this gives us a nice example of a conditionally convergent series.
In fact this is an example of a series where the sum is known and it is loge(2)
(the logarithm to base e of 2 whose decimal expansion begins 0.6931471.) The
proof uses calculus which goes beyond the scope of this book but I’ve included a
sketch below for those who know some integration (and as an incentive to learn
about it for those who don’t.)

We start with the following binomial series expansion which is valid for −1 < x < 1:

(1 + x)−1 =

∞∑
n=0

(−1)nxn

= 1− x+ x2 − x3 + x4 − · · ·

Now integrate both sides (the interchange of integration with infinite summation
on the right hand side needs justification!) to get

loge(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·

=
∞∑

n=1

(−1)n+1 x
n

n!

Because of the constraint on x we can’t just put x = 1 (tempting though this may

be) but after some careful work, it turns out that you can take the limit as x → 1

(from below) and this gives the required result.
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6.10 Regrouping and Rearrangements

There are two ways in which we can mix up the terms in an infinite series -
by regrouping and by rearrangement. In the first of these we add the series
in a different way by bracketing the terms differently (I did this earlier for the

series
n∑

i=1

(−1)i) but we don’t change the order in which terms appear. In the

second we mix up the order in which terms appear as much as we please. For

example, consider the series
n∑

i=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · ·. An example

of a regrouping of this series is

1 +

(
1

4
+

1

9

)
+

(
1

16
+

1

25
+

1

36

)
+ · · · = 1 +

13

36
+

469

3600
+ · · ·

and here is a rearrangement of the same series:

1 +
1

9
+

1

25
+

1

36
+

1

4
+

1

49
+

1

36
+ · · ·

If a series is convergent then regrouping can’t do it much harm but rear-
rangements can wreak havoc as we will see. First lets look at regrouping:

Theorem 6.10.1 If a series converges to l then it continues to converge to the
same limit after any regrouping.

Proof. Suppose the series

n∑
i=1

ai converges to l. We’ll write a general re-

grouping of the series as follows:
b1 = a1 + a2 + · · ·+ am1

b2 = am1+1 + am2+2 + · · ·+ am2

. . · · · · · ·

. . · · · · · ·

. . · · · · · ·
bn = ami−1+1 + ami−1+2 + · · ·+ ami .

Then

n∑
i=1

bi =

mi∑
r=1

ar and we have mi ≥ n. Since the original series converges

we know that given ϵ > 0 there exists n0 such that if mi > n0 then

∣∣∣∣∣
mi∑
r=1

ai − l

∣∣∣∣∣ <
ϵ. Now if n > n0 we must have mi > n0 and so

∣∣∣∣∣
n∑

i=1

bi − l

∣∣∣∣∣ < ϵ which gives the

required convergence. �
The contrapositive of the statement of this theorem tells us that if a series

converges to more than one limit after regrouping then it diverges and this gives
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us a simple proof that
∑n

i=1(−1)n diverges as we’ve already shown how to group
it in such a way that it converges to 0 and to 1.

Rearrangements are more complicated. We won’t prove anything about
them here but will be content with just stating two results which are both
originally due to the great nineteenth century German mathematician Bernhard
Riemann20 (1826-66)

• If

n∑
i=1

ai is absolutely convergent to l then any rearrangement of the series

is also convergent to the same limit.

• If

n∑
i=1

ai is conditionally convergent then given any real number x, it is

possible to find a rearrangement such that the rearranged series converges
to x. In fact rearrangements can even be found for which the series diverges
to +∞ or −∞.

The second result quoted here is quite mindboggling and the two results
taken together illustrates that there is quite a significant difference in behaviour
between absolutely convergent and conditionally convergent series. To see a
concrete example of how to rearrange conditionally convergent series to converge
to different values look at pp. 177-8 of D.Bressoud “A Radical Approach to Real
Analysis” (second edition), Mathematical Association of America (2007)21.

I’ll close this section with a remark about divergent series. You may think
that once a series has been shown to diverge then that’s the end of the story. In
fact it can sometimes make sense to assign a number to a divergent series and
even refer to it as the “sum”- where “sum” is interpreted in a different way to

usual. For example consider our old friend (6.1.2) - the series
n∑

i=1

(−1)i+1. The

great Leonhard Euler noticed that this is a geometric series with first term 1 and
common ratio −1. Even though the formula (6.6.12) is not valid in this context,

Euler applied it and argued that the series “converges” to
1

2
. Euler’s reasoning

was incorrect here but his intuition was sound. If you redefine summation of a
series to mean taking the limit of averages of partial sums rather than partial
sums themselves, then this is precisely the answer that you get. If you want
to explore divergent series further from this point of view then a good place to
start is Exercise 6.19. See also http://en.wikipedia.org/wiki/Divergent series

6.11 Real Numbers and Decimal Expansions

In this book we’ve adopted a working definition of a real number as one that has
a decimal expansion. But what do we really mean by this? Since a0.a1a2a3a4 · · · =

20See http://en.wikipedia.org/wiki/Bernhard Riemann
21This book is briefly discussed in Chapter 14
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a0+0.a1a2a3a4 · · · if the number 0.a1a2a3a4 · · · is positive and a0−0.a1a2a3a4 · · ·
if it is negative we might as well just consider those real numbers that lie between
0 and 1 for the purposes of this discussion. Now

0.a1a2a3a4 · · · =
a1
10

+
a2
100

+
a3

1000
+

a4
104

+ · · ·

so we can see that decimal expansions are really nothing but a convenient

shorthand for convergent infinite series of the form
∞∑

n=1

an
10n

. As we’ve already

remarked, a rational number either has a finite decimal expansion such as 1
2 =

5
10 +

0
100 +

0
1000 + · · · or the ans are given by a periodic (or eventually periodic)

pattern such as 1
3 =

∞∑
n=1

3

10n
so each an = 3 in this example.

By the way, it appears that we have privileged the number 10 in this story but
(as discussed in section 2.1) that is just a matter of convenience and collective
habit. We could just as easily work in base 2 for example and represent all

numbers between 0 and 1 as binary decimals
∞∑

n=1

bn
2n

. e.g. 1
2 = 0.1 in this base

and 1
3 = 0.0̇1̇ =

∞∑
n=1

1

4n
. This is of course a geometric series and you should

check that it has the right limit.

We stick to base 10 because we’re used to it (recall the discussion in section
2.1.)

An interesting phenomenon occurs with numbers whose decimal expansion
is always 9 after a given point so they look like x = a1a2 · · · aN999 · · · =

a1a2 · · · aN 9̇ = a1a2 · · · aN +

∞∑
r=N+1

9

10r
.

Lets focus on
∞∑

r=N+1

9

10r
. This is a geometric series whose first term is 9

10N+1

and common ratio is 1
10 . So it converges to

9
10N+1

1− 1
10

=
9

10N+1

9
10

=
1

10N
.

This means that x = a1a2 · · · aN +0.00 · · · 01 where the 1 is in the Nth place
after the decimal point. So we can write x = a1a2 · · · aN ′ where aN ′ = aN + 1,
e.g. 0.3679̇ = 0.368 and 0.999999 · · · = 0.9̇ = 1.

Generally two distinct decimal expansions that differ in only one place give
rise to different numbers. The phenomenon that occurs with repeating nines is
a very special one where the notation breaks down and appears to be giving you
two different numbers that are in fact identical. From a common-sense point of
view this may be quite obvious as e.g. 1

3 = 0.3̇ and 1 = 3× 1
3 = 3× 0.3̇ = 0.9̇.
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Just before we conclude this chapter we may ask whether every series

∞∑
n=1

an
10n

converges to give a legitimate decimal expansion. Here the ans are chosen from
0, 1, 2, . . . , 9. It easy to establish convergence. Since each an ≤ 9 we can use

the comparison test as
∞∑

n=1

9

10n
= 1. Thus we have a complete correspondence

between numbers that lie between 0 and 1 and infinite series of the form
∞∑

n=1

an
10n

.

6.12 Exercises for Chapter 6

1. Investigate the convergence of the following series and find the sum when-
ever this exists

(a)

∞∑
n=0

100

3n
, b)

∞∑
n=1

n(n+ 1) (c)

∞∑
n=1

4

(n+ 1)(n+ 2)

(d)
∞∑

n=1

1

n(n+ 2)
, (e)

∞∑
n=0

sinn(θ) where 0 ≤ θ ≤ 2π

2. Use known results about sequences to give thorough proofs that if
∞∑

n=1

an

and
∞∑

n=1

bn both converge then

(a)
∞∑

n=1

(an + bn) converges

(b) λ

∞∑
n=1

an converges for all λ ∈ R

Formulate and prove similar results which pertain to divergence in the
case where both series are properly divergent to +∞ or to −∞. Why
doesn’t (a) extend to the case where one of the series is properly divergent
to +∞ while the other is properly divergent to −∞?

3. Show that if
∞∑

n=1

an converges then limN→∞

∞∑
n=N

an = 0

4. (a) Use geometric series to write the recurring decimal 0.1̇7̇ as a fraction
in its lowest terms. [Hint: 0.1̇7̇ = 17

100 + 17
10000 + 17

106 + · · · .]
(b) Suppose that c is a block of m whole numbers in a recurrent decimal

expansion 0.ċ (e.g. if c = 1234 thenm = 4 and 0.ċ = 0.1̇234̇.) Deduce
that 0.ċ = c

10m−1 .
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5. Show that each of the series whose nth term is given below diverges

(a) (−1)n (b) (1 + ϵ)n where ϵ > 0 (c)
n+ 1

n+ 2

6. Use the comparison test to investigate the convergence of the series whose
nth term is as follows

(a)
1

1 + n2
, (b)

1 + cos(n)

2n
, (c)

n

n2 − 1
, (d)

n

n3 + 1
, (e)

2 + sin(n)

n
.

7. Use the ratio test to investigate the convergence of the series whose nth
term is as follows

(a)
(n!)2

(2n)!
, (b)

2n

n!
, (c)

n!

nn
, (d)

nn

n!
.

Note that the solutions to (c) and (d) require some knowledge of the
number e, which is discussed in Chapter 7.

8. Use any appropriate technique to investigate the convergence of the series
whose nth term is as follows

(a)
1

nn
(b)

√
n+ 1−

√
n (c)

1√
n(n+ 1)

(d)
n!(n+ 4)!

(2n)!

Once again for (a) it helps if you know about e (or do Problem 13 first.)

9. Show that if
∑∞

n=1 an is a convergent series of non-negative real numbers
and (bn) is a bounded sequence of non-negative real numbers, then the
series

∑∞
n=1 anbn also converges.

10. Show that if
∑∞

n=1 an is a convergent series of positive real numbers then
the series

∑∞
n+1

√
anan+1 is also convergent.

11. Prove the following more powerful form of the ratio test which does not

assume that limn→∞
an+1

an
exists:-

Let (an, n ∈ N) be a sequence of positive numbers for which there exists
0 ≤ r < 1 and a whole number n0 such that for all n > n0,

an+1

an
≤ r then

∞∑
n=1

an converges. If
an+1

an
> 1 for all n ≥ n0 then

∞∑
n=1

an diverges.

12. Give thorough proofs of the comparison test and the ratio test for series
of the form

∑∞
n=1 an where (an) is an arbitrary real-valued sequence.
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13. Although they are the best known ones, the comparison test and the ratio
test are not the only tests for convergent series. Another well-known test is
Cauchy’s root test. This states that if (an) is a sequence with each an > 0
and if there exists 0 < r < 1 with n√an < r for all n then

∑∞
n=1 an

converges but if n√an > 1 for all n then
∑∞

n=1 an diverges. To prove this
result:

(a) Assume n√an < r with 0 < r < 1. Show that an ≤ rn for all n
and hence use the comparison test with a geometric series to show∑∞

n=1 an converges.

(b) Suppose that n√an > 1 for all n. Deduce that limn→∞ an = 0 cannot
hold and hence show that

∑∞
n=1 an diverges.

(c) Deduce the stronger from of the root test whereby for convergence
we only require that n√an < r for all n ≥ n0 where n0 is a given
whole number and for divergence we ask that n√an > 1 for infinitely
many n.

14. In section 6.6 we showed that
∑∞

n=1
1
nr converges whenever r > 1. You

can use a similar argument to prove another test for convergence of series
called Cauchy’s condensation test: if (an, n ∈ N) is a non-negative mono-

tonic decreasing sequence then
∞∑

n=1

an converges if and only if
∞∑

n=1

2na2n

converges.

Hint: First show that for each k ∈ N,

a2k + a2k+1 + . . . a2k+1−1 ≤ 2ka2k

a2k+1 + a2k+2 + . . . a2k+1 ≥ 2ka2k+1

15. For each of the following series, decide whether it is (a) convergent, (b)
absolutely convergent, giving your reasons in each case.

(i)
∞∑

n=1

(−1)n+1

√
n

(ii)
∞∑

n=1

(−1)n−1

3n2 − 2n
(iii)

∞∑
n=1

cos(nπ)

n5

16. Only one of the following statements is true. Present either a counter-
example or a proof in each case

(a) If

∞∑
n=1

a2n converges then so does

∞∑
n=1

|an|

(b) If

∞∑
n=1

|an| converges then so does

∞∑
n=1

a2n
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17. Give an example of a sequence (an, n ∈ N) for which

∞∑
n=1

an converges but

∞∑
n=1

a2n does not.

18. Recall Cauchy’s inequality for sums from Exercise 3.9: If a1, a2, . . . , an
and b1, b2, . . . , bn are real numbers then∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2i

) 1
2
(

n∑
i=1

b2i

) 1
2

.

Now extend this inequality to series so if (an) and (bn) are sequences
and we are given that both

∑∞
n=1 a

2
n and

∑∞
n=1 b

2
n converge, show that∑n

i=1 aibi converges absolutely and that

∞∑
n=1

|anbn| ≤

( ∞∑
n=1

a2n

) 1
2
( ∞∑

n=1

b2n

) 1
2

.

19. Suppose that
∑∞

n=1 an diverges. It is sometimes useful to find the sum of
an associated series that really converges. One example of a summation
technique for associating a convergent series to a divergent one is Cèsaro
summation. Recall the sequence of partial sums (sn) where sn =

∑n
i=1 ai.

We define the Cèsaro average of the partial sums to be s′n = 1
n (s1 + s2 +

· · · + sn) and if limn→∞ s′n exists then we say that the series
∑∞

n=1 an is
Cèsaro summable.

(a) Prove that if
∑∞

n=1 an converges in the usual sense then it is also
Cèsaro summable and that both limits are the same.

(b) Let an = (−1)n+1. Show that
∑∞

n=1 an is Cèsaro summable and that
the limit of the Cèsaro averages is 1

2 .


