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1 Regular Variation

Let F be the distribution function of a non-negative random
variable F (x) = P (X 6 x). Tail F (x) = 1− F (x) = P (X > x).

X (or F ) has regular variation at infinity with index α > 0 -
F ∈ R−α if

lim
x→∞

F (cx)

F (x)
= c−α, for all c > 0,

i.e. F (x) = x−αL(x), L ∈ R0.

Regular variation is important in probability theory as:-

• Subexponential, limx→∞
F ∗ F (x)

F (x)
= 2

⇒ P (X1 + X2 > x) ∼ P (max{X1, X2} > x),

where X1, X2 are independent copies of X.

• Domains of attraction

- in CLT for stable laws (DNA)

- in extreme value theory for Fréchet distribution

• Applications to e.g. insurance risk, finance, communication
systems:-

Large Deviations for Heavy tails: - rare events are caused
by the smallest possible number of individual factors.

P.Embrechts, C.Klüppelberg, T.Mikosch, Modelling Extremal
Events for Insurance and Finance, Springer-Verlag, Berlin, Hei-
delberg (1997)

Left tails: Let g : (−∞, 0) → R+ and define g̃ : (0,∞) → R+ by
g̃(x) = g(−x), for all x > 0. g ∈ Lα if and only if g̃ ∈ Rα.
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2 Lévy Processes

(X(t), t > 0) has stationary and independent increments, X(0) =
0 (a.s.), stochastically continuous and càdlàg paths.

Write Ft = FX(t)

The Lévy-Itô decomposition

X(t) = bt + σB(t) +

∫

|x|<1
xÑ(t, dx) +

∫

|x|>1
xN(t, dx)

= drift + diffusion + small jumps + large jumps

where

• b ∈ R, σ > 0.

• B is a standard Brownian motion.

• N is a Poisson random measure on R+ × (R − {0}) with
intensity measure Leb ⊗ν

N(t, A) = #{0 6 s 6 t; ∆X(s) ∈ A}.

• Ñ is the compensator - Ñ(dt, dx) = N(dt, dx)− ν(dx)dt.

• ν is a Lévy measure
∫
R−{0}(|x|2 ∧ 1)ν(dx) < ∞.

Tail Equivalence

Ft ∈ R−α ⇔ ν ∈ R−α ⇒ lim
x→∞

Ft(x)

tν(x)
= 1

- Feller (1971), Embrechts and Goldie (1981),

(multivariate case - Hult and Lindskog (2002)).
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3 Stock Price Models

Stock price evolution (S(t), t > 0).

Black-Scholes model S(t) = S0 exp
{
σB(t) +

(
µ− 1

2σ
2t

)}
.

Defects of Black-Scholes model:-

Empirical evidence suggests

• Non-Gaussian log returns (kurtosis > 3).

• Non-constant volatility.

Lévy models S(t) = S0 exp X(t)

e.g. X hyperbolic, generalised inverse Gaussian, Meixner process.
Geman, Madan, Yor - small jumps “infinite activity”, large
jumps “finite activity”.

see W.Schoutens, Lévy Processes in Finance: Pricing Financial
Derivatives, Wiley (2003)

Some empirical evidence for heavy tails with 2 6 α 6 4. Perhaps
we should take X to be a more complicated semimartingale with
jumps and heavy tails ?
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4 Lévy-Type Stochastic Integrals

(Ω,F , P ). Filtration (Ft, t > 0). P predictable σ-algebra.

E := {x ∈ R; 0 < |x| < 1} , Ec = {x ∈ R; |x| > 1}.
(F, G, H,K) a quadruple

• F = (F (t), t > 0), G = (G(t), t > 0) are predictable

• H = (H(t, x), t > 0, x ∈ E) is P ⊗ B(E) measurable.

• K = (K(t, x), t > 0, x ∈ Ec) is P ⊗ B(Ec) measurable.

Assume

∫ t

0

(
|F (s)|+ |G(s)|2 +

∫

E

|H(s, x)|2ν(dx)

)
ds < ∞ a.s..

Lévy-type stochastic integral M = (M(t), t > 0), for each t > 0,

M(t) :=

∫ t

0
F (s)ds +

∫ t

0
G(s)dB(s) +

∫ t

0

∫

E

H(s, x)Ñ(ds, dx)

+

∫ t

0

∫

Ec

K(s, x)N(ds, dx)

:= IF
1 (t) + IG

2 (t) + IH
3 (t) + IK

4 (t) (4.1)

= drift + diffusion + small jumps + large jumps (4.2)

M is a semimartingale.

• IG
2 and IH

3 are local martingales.

• IF
1 and IK

4 are processes of finite variation.

• IK
4 (t) is a (random) finite sum - IK

4 (t) =
∑

06s6t K(s, ∆Y (s)),
where Y (s) =

∫
|x|>1 xN(s, dx).

Reference - D.Applebaum Lévy Processes and Stochastic Calcu-
lus, Cambridge University Press (2004)
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5 Moment Estimates

Aim: To find sufficient conditions for M to have regular varia-
tion.

Strategy: By imposing suitable moment conditions on F,G and
H, show that the right tails of IF

1 , IG
2 and IH

3 decay faster than
any negative power of x.

Fix T > 0, 0 < t 6 T

Test case: IG
2 (t) =

∫ t

0 G(s)dB(s).

If 0 6 α < 2, we assume that
∫ T

0 E(|G(s)|2)ds < ∞.

Itô’s isometry yields

E(|IG
2 (t)|2) =

∫ t

0
E(|G(s)|2)ds.

Markov’s inequality yields

P (|IG
2 (t)| > λ) 6

∫ t

0 E(|G(s)|2)ds

λ2 ,

hence for any L ∈ R0

lim sup
λ→∞

P (|IG
2 (t)| > λ)

λ−αL(λ)
= 0.
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If α > 2, assume that
∫ t

0 E(|G(s)|α+ε)ds < ∞, for some ε > 0.

As above, we have

P (|IG
2 (t)| > λ) 6 E(|IG

2 (t)|α+ε)

λα+ε
.

Using Burkholder and Hölder’s inequalities, we obtain

E(|IG
2 (t)|α+ε) 6 C1(α, ε)E([IG

2 , IG
2 ](t)

α+ε
2 )

= C1(α, ε)E

[(∫ t

0
|G(s)|2ds

)α+ε
2

]

6 C1(α, ε)t
α+ε−2

2

∫ t

0
E(|G(s)|α+ε)ds,

and we are finished.
Similar arguments are used to deal with IF

1 and IH
3 .

For IH
3 use recent estimate due to H.Kunita: for each p > 2,

E(|IH
3 (t)|p) 6 C2(p)

{∫ t

0

∫

E

E(|H(s, x)|p)ν(dx)ds

+ E

[(∫ t

0

∫

E

|H(s, x)|2ν(dx)ds

)p
2

]}
,

for all 0 6 t 6 T , where C2(p) > 0.
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6 Assumptions

1. For all x ∈ Ec, K(t, x) = K(t)f(x),

where inf06s6t K(s) > 0 for all t > 0, f(x) > 0.

2. f+ := f1{x>1} ∈ Rβ for some β > 0 and is non-decreasing
with limx→∞ f+(x) = ∞.

f− := f1{x6−1} ∈ Lδ for some δ > 0 and is non-increasing
with limx→−∞ f−(x) = ∞.

3. K is cáglád and independent of N . For each 0 6 t 6 T ,
there exists ε(t) > 0 such that E(K(t)ρ+ε(t)) < ∞, for some
fixed ρ > 0.

[K(t) = sup
06s6t

K(s), K(t) = inf
06s6t

K(s) for each t > 0].

4. ν((−∞, λ)) ∈ L−γ and ν((λ,∞) ∈ R−α, where α, γ > 0.

5. Asymptotic independence

For all a ∈ R,

P (M(t)−IK
4 (t) > a|IK

4 (t) > b) ∼ P (M(t)−IK
4 (t) > a) as b →∞.
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7 The Associated Compound Poisson Process

Define Zf(t) =
∫
|x|>1 f(x)N(t, dx)

Proposition 7.1 FZf (t) ∈ R−ρ, where ρ = min
{

α
β , γ

δ

}
.

Proof

Zf(t) =

∫

x6−1
f(x)N(t, dx) +

∫

x>1
f(x)N(t, dx)

:= Z+
f (t) + Z−

f (t).

Z+
f and Z−

f are independent compound Poisson processes with

Lévy measures ν ◦ f−1
+ and ν ◦ f−1

− , respectively.

It follows that νf+
∈ R−α

β
and νf− ∈ R−γ

δ
,

[see Proposition 0.8 in S.Resnick, Extreme Values, Regular Vari-
ation and Point Processes, Springer-Verlag, New York (1987)]

By tail equivalence, FZ+
f (t) ∈ R−α

β
and FZ−f (t) ∈ R−γ

δ
.

Result follows by fact that:

If X and Y are independent random variables, with FX ∈ R−a

and FY ∈ R−b, then FX+Y ∈ R−min{a,b}.
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8 Regular Variation of the Process IK
4 (t) =∫ t

0

∫
|x|>1 K(s, x)N(ds, dx)

Fact: (Breiman) If FX ∈ R−α and Y > 0 is independent of X

with E(Y α+ε) < ∞, for some ε > 0 then FXY ∈ R−α.

[see section 4.2 in S.Resnick, Point processes, regular variation
and weak convergence, Adv. Appl. Prob. 18, 66-138 (1986)]

Theorem 8.1 FIK
4 (t) ∈ R−ρ for each 0 < t 6 T .

Proof. Using assumption 3, we obtain

1 = lim
λ→∞

P (K(t)Zf(t) > λ)

λ−ρL(ρ)

6 lim inf
λ→∞

P (IK
4 (t) > λ)

λ−ρL(ρ)
6 lim sup

λ→∞

P (IK
4 (t) > λ)

λ−ρL(ρ)

6 lim
λ→∞

P (K(t)Zf(t) > λ)

λ−ρL(ρ)
= 1,

and the required result follows. ¤
e.g. Take each K(t) = g(B(t)), where B = (B(t), t > 0) is a
standard Brownian motion and g : R → (0,∞) is continuous,
convex and polynomially bounded.
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9 The Main Theorem

Theorem 9.1 Let M = (M(t), 0 6 t 6 T ) be a Lévy-type sto-
chastic integral of the form satisfying the conditions (1) to (5).
Further assume the following:-

• If 0 6 ρ 6 1,

∫ T

0

[
E

(
|F (s)|+ |G(s)|2 +

∫

E

|H(s, x)|2ν(dx)

)]
ds < ∞.

• If 1 6 ρ < 2, for some ε > 0,

∫ T

0

[
E

(
|F (s)|ρ+ε + |G(s)|2 +

∫

E

|H(s, x)|2ν(dx)

)]
ds < ∞.

• If ρ > 2, for some δ1, δ2, δ3 > 0,

∫ T

0

[
E

(
|F (s)|ρ+δ1 + |G(s)|ρ+δ2 +

∫

E

|H(s, x)|ρ+δ3ν(dx)

)]
ds < ∞,

if ν(E) < ∞ or,

∫ T

0

[
E

(
|F (s)|ρ+δ1 + |G(s)|ρ+δ2 +

∫

E

|H(s, x)|ρ+δ3ν(dx)

)]
ds

+ E




(∫ T

0

∫

E

|H(s, x)|2ν(dx)ds

)ρ+δ3
2


 < ∞,

if ν(E) = ∞.

Then FM(t) ∈ R−ρ for each 0 < t 6 T .
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Proof of the theorem

Let N(t) = M(t)− IK
4 (t).

For each 0 < η < 1,

P (M(t) > λ) 6 P (IK
4 (t) > (1− η)λ) + P (N(t) > (1− η)λ)

+ P (IK
4 (t) > ηλ, N(t) > ηλ)

6 P (IK
4 (t) > (1− η)λ) + P (|N(t)| > (1− η)λ)

+ P (|N(t)| > ηλ).

Now for any κ > 0,

P (|N(t)| > κ) 6 P
(
|IF

1 (t)| > κ

3

)
+P

(
|IG

2 (t)| > κ

3

)
+P

(
|IH

3 (t)| > κ

3

)
.

Moment estimates ensure that

lim
λ→∞

P (|N(t)| > (1− η)λ) + P (|N(t)| > ηλ)

λ−ρL(λ)
= 0,

for any L ∈ R0.

Hence lim sup
λ→∞

P (M(t) > λ)

λ−ρL(λ)
6 lim

λ→∞
P (IK

4 (t) > (1− η)λ)

λ−ρL(λ)
= (1−η)−ρ.

Now take limits as η ↓ 0, to obtain

lim sup
λ→∞

P (M(t) > λ)

λ−ρL(λ)
6 1.
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For the reverse inequality, fix C > 0, then

P (M(t) > λ) > P (N(t) > −C, IK
4 (t) > λ + C)

= P (N(t) > −C|IK
4 (t) > λ + C)P (IK

4 (t) > λ + C).

By the asymptotic independence assumption

P (N(t) > −C|IK
4 (t) > λ + C) ∼ P (N(t) > −C), as λ →∞.

By the representation theorem for slowly varying functions,

P (IK
4 (t) > λ + C) ∼ P (IK

4 (t) > λ), as λ →∞.

Hence deduce that

lim inf
λ→∞

P (M(t) > λ)

λ−ρL(λ)
> P (N(t) > −C).

Now take limits as C →∞, to obtain

lim inf
λ→∞

P (M(t) > λ)

λ−ρL(λ)
> 1,

and the result follows. ¤
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10 Extensions

• Similar results hold in multivariate case - use recent ideas
of

F.Lindskog, Multivariate Extremes and Regular Variation
for Stochastic Processes, Diss. ETH No.15319 (2004)

• Extensions to more complicated classes of semimartingales
?

• What about subexponentiality ?

• Applications to finance ?
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