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1 Regular Variation

Let F' be the distribution function of a non-negative random
variable F(z) = P(X < z). Tail F(z) =1— F(z) = P(X > ).
X (or F) has regular variation at infinity with index o > 0 -
FeR_,if

lim ]i(cx) =c % forallc>0,

= T (o)

ie. F(xr)=12"“L(z),L € Ry.

Regular variation is important in probability theory as:-

— =
F(z)

e Subexponential, lim, .

= P(X;+ Xy > z) ~ P(max{ X1, Xo} > z),
where X7, X5 are independent copies of X.

e Domains of attraction
- in CLT for stable laws (DNA)

- in extreme value theory for Fréchet distribution

e Applications to e.g. insurance risk, finance, communication
systems:-

Large Deviations for Heavy tails: - rare events are caused
by the smallest possible number of individual factors.

P.Embrechts, C.Kliippelberg, T.Mikosch, Modelling Extremal
Fvents for Insurance and Finance, Springer-Verlag, Berlin, Hei-
delberg (1997)

Left tails: Let g : (—00,0) — RT and define g : (0,00) — R™ by
g(x) =g(—x), for all x > 0. g € L, if and only if § € R,.
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2 Lévy Processes

(X (t),t > 0) has stationary and independent increments, X (0) =
0 (a.s.), stochastically continuous and cadlag paths.

Write Ft = FX(t)
The Lévy-It6 decomposition

X(t) = bt+JB(t)+/ xN(t,d:v)+/| zN(t,dx)

|x|<1
= drift + diffusion + small jumps + large jumps

where
ehbeR,0>0.
e B is a standard Brownian motion.

e N is a Poisson random measure on Rt x (R — {0}) with
intensity measure Leb ®v

N(t, A) = #{0 < s < £ AX(s) € A).

e N is the compensator - N(dt,dz) = N(dt,dz) — v(dz)dt.
e v is a Lévy measure fR_{O}(\xP A Dv(dr) < oo.
Tail Equivalence

— F
FER S TER 4= lim i(z)
T—00 tl/(x)
- Feller (1971), Embrechts and Goldie (1981),

(multivariate case - Hult and Lindskog (2002)).
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3 Stock Price Models

Stock price evolution (S(t),t > 0).
Black-Scholes model S(t) = Syexp {oB(t) + (u — 30%t) }.
Defects of Black-Scholes model:-

Empirical evidence suggests

e Non-Gaussian log returns (kurtosis > 3).

e Non-constant volatility.

Lévy models S(t) = Spexp X (t)

e.g. X hyperbolic, generalised inverse Gaussian, Meixner process.
Geman, Madan, Yor - small jumps “infinite activity”, large
jumps “finite activity”.

see W.Schoutens, Lévy Processes in Finance: Pricing Financial
Derivatives, Wiley (2003)

Some empirical evidence for heavy tails with 2 < a < 4. Perhaps
we should take X to be a more complicated semimartingale with
jumps and heavy tails 7



4 Lévy-Type Stochastic Integrals
(Q, F, P). Filtration (F;,t > 0). P predictable o-algebra.
E={reR0<|z| <1} , EC={x eR;|z|>1}.
(F,G,H, K) a quadruple
= (F(t),t 2 0),G = (G(t),t > 0) are predictable
= (H(t,z),t > 0,2 € F) is P ® B(E) measurable.
= (K(t,z),t > 0,z € E°) is P ® B(E°) measurable.

Assume /Ot (\F(s)\ +|G(s)]* + /E \H(s,x)|21/(dx)> ds < 00 a.s..

Lévy-type stochastic integral M = (M (t),t > 0), for each t > 0,

M(t) = /0 ds+/G JAB(s //Ha: (ds, dz)

/0 . K(s,x)N(ds,dx)

= IF(t) + IS (t) + I () + I (1) (4.1)
= drift + diffusion + small jumps + large jumps (4.2)

M is a semimartingale.
e [{ and I are local martingales.

e [ and I' are processes of finite variation.

e I{(t)is a (random) finite sum - If* (t) = >, K(s, AY (s)),
where Y (s) = f\rl>1 xN(s,dzr).

Reference - D.Applebaum Lévy Processes and Stochastic Calcu-
lus, Cambridge University Press (2004)
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5 Moment Estimates

Aim: To find sufficient conditions for M to have regular varia-
tion.

Strategy: By imposing suitable moment conditions on F, G and
H, show that the right tails of I{', I and I decay faster than
any negative power of z.

Fix T>0,0<t<T
Test case: I$(t) = fot G(s)dB(s).
If 0 < a < 2, we assume that fOT E(|G(s)]*)ds < oo.

[t0’s isometry yields

t

E(IS (1)) = / E(G(s))ds.

0

Markov’s inequality yields

JiE(IG(s)]?)ds
P 20 < S——5——,

hence for any L € R

PIS(H)] > A
i sup PUE @ > )

|
= 0.
o ALV




If @ > 2, assume that fo G(s8)|*T)ds < oo, for some € > 0,

As above, we have

P > 3 < SO

Using Burkholder and Holder’s inequalities, we obtain

E(|IS (1)) < Cile, o) E([IS, IE] (1))

o[ [ or)”

< Oy, )t™s / E(G(s)|"")ds,

and we are finished.
Similar arguments are used to deal with I and 1.
For I use recent estimate due to H.Kunita: for each p > 2,

E(IH (6)7) {// (H (5, 2)/P)w(da)ds
(/0 /E\H(s,x)\%(dx)ds) ”

for all 0 < ¢t < T, where Cy(p) > 0




Assumptions

. Forall z € B¢, K(t,x) = K(t)f(z),

where infocs<r K(s) > 0 for all £ > 0, f(z) > 0.

- f+ = fl=1y € Ry for some § > 0 and is non-decreasing
with lim,_ . fi(x) = co.

J- = fliz<cny € Ls for some § > 0 and is non-increasing

with lim,_,_ f_(z) = oc.

. K is caglad and independent of N. For each 0 <t < T,
there exists e(t) > 0 such that E(K (t)**®) < oo, for some
fixed p > 0.

[K(t) = sup K(s), K(t)= inf K(s) for eacht > 0.

0<s<t 0<s<t

. v((—o00,A)) € L_, and v((X, 00) € R_,, where a,y > 0.

. Asymptotic independence
For all a € R,

P(M#t)—IF(t) > a|lIF(t) > b) ~ P(M(t)—IF(t) > a) as b — oo.



7 The Associated Compound Poisson Process
Define Z¢(t) = flw\>1 f(x)N(t,dx)
Proposition 7.1 Fz ;) € R_,, where p = min {%, %}

Proof

Zf(t):/<1f N(t,dz) + /f N(t, d)
- 2} + 2 ().

Z;[ and Zf_ are independent compound Poisson processes with
Lévy measures v o f;! and v o =1, respectively.
It follows that 77 € R_s and V5~ € R_g,

[see Proposition 0.8 in S.Resnick, Extreme Values, Regular Vari-
ation and Point Processes, Springer-Verlag, New York (1987)]

By tail equivalence, F 7t (1) € R_2 and F 75 () € R_1.
Result follows by fact that:

If X and Y are independent random variables, with Fx € R_,
and F_Y € R_p, then Fx,y € R_ min{a,b}-



8 Regular Variation of the Process Lf( (1) =
t
Ik fuPlK(s,x)N(ds,daﬁ)

Fact: (Breiman) If F'y € R_, and Y > 0 is independent of X
with E(Y**¢) < oo, for some € > 0 then Fxy € R_,.

[see section 4.2 in S.Resnick, Point processes, regular variation
and weak convergence, Adv. Appl. Prob. 18, 66-138 (1986)]

Theorem 8.1 Fixyy € R, for each 0 <t <T.

Proof. Using assumption 3, we obtain

L PUEMZ0) > )
I T A7L(p)

PR >N P(If(t) > \)
< <
< TSI S TS

P(K(t)Z;(t) > \)

SO =1,
o A PL(p)
and the required result follows. [l

e.g. Take each K(t) = g(B(t)), where B = (B(t),t > 0) is a
standard Brownian motion and g : R — (0, 00) is continuous,
convex and polynomially bounded.
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9 The Main Theorem

Theorem 9.1 Let M = (M(t),0 <t < T) be a Lévy-type sto-
chastic integral of the form satisfying the conditions (1) to (5).
Further assume the following:-

o /fO< p< 1,

[ (\F )+ G(s)) + /\st)ﬁ (dx))}ds<oo

o [f1 < p<2, for some e > 0,
E(\F (8)|7F + |G(s)]* + /\HS (s,2) v (da:))] ds < 0.
o If p =2, for some 01, 09,03 > 0,

[ e (rors cicwps+ [ 16.p ) | s < s

if v(F) < oo or,

/ [ (IF< )P |G(s) | + / IH”N"%”“@)]‘Z

Pt

(//\stﬁ (dz)d ) < o,

if v(F) = 0.
Then Fygy € R for each 0 <t < T
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Proof of the theorem
Let N(t) = M(t) — IK(¢).
For each 0 < n < 1,

P(M(t) > \) < PIf(t) > (1—n)A) + PN() > (1 - n)A)
+ PUIE() =\ N(E) 2 n))
< PI() > (1= n)A) + PN 2 (1-n))
+ P(N()| = ).

Now for any x > 0,
K K K

PUN®| = 1) < P (1170 = 5)+P (1£®)] > 5)+P (I 0] > 5)

Moment estimates ensure that

i LUN@ > A =n)A) + P(NE)| > nA)
im

A—00 )\_pL(A)

for any L € Ry.

=0,

Hence lim sup PM(t) > A) P(If(t) > (1=n)A)

<1 — (1-n)*.
P TN A A"L(\) (1=n)

Now take limits as n | 0, to obtain

lim sup PM(©) > A)

<1
veo APL(N)
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For the reverse inequality, fix C' > 0, then

P(M(t)>)\) = P(N(t)>—C, Iff(t) > +C)
= P(N(t) > =C|IF(t) > A+ C)P(If(t) > A+ CO).

By the asymptotic independence assumption
P(N(t) > —=C|IK(t) > A+ C) ~ P(N(t) > —C), as A — oo.
By the representation theorem for slowly varying functions,
P(Iff(t) > A+ C) ~ P(Iff(t) > )), as A — oo.

Hence deduce that

.. P(M(t) > )N
i it = T

> P(N(t) > —0O).

Now take limits as C' — oo, to obtain

. P(M(@) >N
=
ey ot

and the result follows. U]
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10 Extensions

e Similar results hold in multivariate case - use recent ideas
of

F.Lindskog, Multivariate Extremes and Regular Variation
for Stochastic Processes, Diss. ETH No.15319 (2004)

e Extensions to more complicated classes of semimartingales
?

e What about subexponentiality ?

e Applications to finance ?
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