PROBABILISTIC APPROACH TO FRACTIONAL INTEGRALS AND THE
HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

DAVID APPLEBAUM AND RODRIGO BANUELOS

ABSTRACT. We give a short summary of Varopoulos’ generalised Hardy-Littlewood-
Sobolev inequality for self-adjoint Cy semigroups and give a new probabilistic repre-
sentation of the classical fractional integral operators on R” as projections of martingale
transforms. Using this formula we derive a new proof of the classical Hardy-Littlewood-
Sobolev inequality based on Burkholder-Gundy and Doob’s inequalities for martingales.
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1. INTRODUCTION

As is evident from the many recent papers on martingale transforms and their applica-
tions to singular integral operators and Fourier multipliers on R4 (see [2], [4], [51, [71, [10],
[15], [20], for example), martingale inequalities can be very effectively used to study many
operators in analysis which on the surface do not appear related to probability at all. This
point of view often leads to sharp estimates and provides new insight into the behavior of
the operators. Even when the estimates are not sharp, this approach can help clarify how
such bounds may depend on the geometry of the space where the operators are defined. For
the latter point, see for example [5] where bounds are proved for operators on manifolds
with no geometric assumptions on the manifold. In this paper we provide a probabilis-
tic representation for the fractional integral operators on R? as projections of martingale
transforms and use this representation to give a stochastic analytic proof of the classical
Hardy-Littlewood-Sobolev inequality, i.e. for the heat semigroup. Once the representation
is obatined, our proof follows from the classical Burkholder-Gundy inequalities and from
Doob’s inequality. Judging from previous similar representations for singular integrals,

R. Baiiuelos is supported in part by NSF Grant # 0603701-DMS.
1



2 DAVID APPLEBAUM AND RODRIGO BANUELOS

one expects that when this representation is better understood, one would get better (and
perhaps explicit) bounds for the constants given below, this time in terms of the dimension
of the semigroup, which plays a crucial role on this theory.

The Hardy-Littlewood-Sobolev inequality has been extended to the general setting of
Cy-semigroups by Varopoulos in [26] and these extensions have been widely studied by
many researcher for several years. In order to make this paper as self-contained as pos-
sible and to give the non-expert a sense of the level of generality on the validity of the
Hardy-Littlewood-Sobolev inequality, we review Varopoulos’ general approach in §2. The
assumption that the semigroup is self-adjoint (which covers a wide range of examples that
are interesting to both analysts and probabilists), enables us to simplify the proof by us-
ing Stein’s maximal ergodic theorem [23]. To further illustrate with examples, we present
some subordinated semigroups in §3. In §4, we restrict our attention to the heat semigroup,
obtain the probabilistic representation for the corresponding fractional integrals on R?, and
give the probabilistic proof of the Hardy-Littlewood-Sobolev inequality. Such a represen-
tation and proof of the Hardy-Littlewood-Sobolev inequality, in terms of the space-time
Brownian motion first studied in [6], applies to manifolds with certain assumption on their
geometry. On the other hand, since it involves the gradient operator it does not apply (at
least not directly) to more general semigroups. For the semigroups studied in [25], an alter-
nate stochastic representation holds in terms of the construction of Gundy and Varopoulos
[14]. Such a representation is discussed at the end of §4.

Notation. Let S be a metric space with metric p, g be a function from S x S to (0, c0)
and h be a function from (0, 00) to (0,00). Throughout this work we use the notation

g(z,y) < Ch (&cy)) to mean that there exist Cy, Cs, ¢q, ¢ > 0 so that

i (’W) < g(z.y) < Goh (p(“”) |

Cc1 C2

for all z,y € S. Note that the values of C; and ¢;(i = 1,2) may change from line to line.
We will denote the Schwartz space of rapidly decreasing functions on R? by S(R?) . Note
that it is dense in LP(R4) forall 1 < p < oo.

2. THE HARDY-LITTLEWOOD-SOBOLEV THEOREM AND VAROPOULOS DIMENSION

2.1. The (n, p)-ultracontractivity assumption. Let (.S, S, 1) to be a measure space and
let LP(S) := LP(S, S, pu; R). We assume that there is a family of linear operators (T3, ¢ >
0) which are contraction semigroups on L?(S) for all 1 < p < oco. However we only
assume that the semigroup is strongly continuous in the case p = 2. We further assume
that 7} is self-adjoint on L?(S) for all ¢ > 0.

In the proof of Theorem 2.3 below, we will make use of the fact (as is shown in [23]),
that for all 1 < p < oo there exists D,, > 0 so that for all f € LP(S),

2.1 L/ llp < Dpllf1lp:

where forall z € S, f*(x) = sup,~ |T:f(x)|. Note also that f* is a well-defined measur-
able function.

We make the following assumption, which as we shall see, is satisfied by many semi-
groups.

Assumption 2.1 ((n, p)-ultracontractivity). There exists an n > 0 (not required to be an
integer) such that for all 1 < p < oo, there exists Cp, , > 0 so that forall t > 0, f €
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L7(S),
(2.2) T flloo < Cpnt™ 2 || £1|p-

Following Varopoulos’ terminology, the number n will be referred to as the dimension of
the semigroup Tj.

Note that the semigroup (73,t > 0) is then ultracontractive as defined, for example in
[12]. Thatis, Ty : L*(S) — L>°(S) for all t > 0. We now examine (2.2) from the point
of view of semigroups that are integral operators with positive kernels. If (2.2) holds and
we assume that the semigroup is L? positivity-preserving, i.e. that for all f € L?(S) with
f >0 (ae.) wehave Ty f > 0 (a.e.) for all ¢ > 0, it follows from [12] pp.59-60 that the
semigroup has a symmetric kernel & : (0,00) x S x S — [0, c0) so that

T,f(x) = /S F (ke y)ldy),

forall f € LP(S),z € S,t > 0 and moreover

sup ki(z,y) < ¢
z,yeS

where the mapping ¢ — ¢; is monotonic decreasing on (0, co) with lim;_,o ¢; = cc.
Conversely suppose the semigroup (73,¢ > 0) is given by a kernel so that

T,f(x) = /S F()ke(z, ) a(dy)

forallz € S, f € LP(S),1 < p < co. Assume that the kernel £ € C((0,00) x S x §)
and is also such that

o [gki(x,y)u(dy) = 1forallt > 0,z € S (so that k(x,-) is the density, with
respect to the reference measure p, of a probability measure on .S),
e There exists C' > 0 so that forallt > 0,z,y € .5,

ky(z,y) < Ct™ %,

o k; is symmetric for all ¢ > 0, i.e. kt(x,y) = ki(y,z) forall ,y € S.
Then (2.2) is satisfied since by Jensen’s inequality, forall 1 < p < oo,z € S;t > 0

T @) = /S F()ke(z, ) u(dy)
< /S PPk, y)(dy)
< o E|fE,

and so
1 _n
T flloo < Crt™ 20| f]]p-

In particular, this condition is satisfied by the heat kernel on certain Riemannian mani-
folds where n = d, the dimension, and on some classes of fractals where n = 2% where
« is the Hausdorff dimension and (3 is the walk dimension (see e.g. [17]). As discussed in
63 it holds for the 3-stable transition kernel on Euclidean space and a class of Riemann-
ian manifolds where n = %. It also holds for strictly elliptic operators on domains in

Euclidean space (see [12] Theorem 2.3.6, pp.73-4).
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2.2. Fractional Integral Operators. Fix 1 < p < oo and for any 0 < o < n define a
linear operator I, called the fractional integral of f, by

(2.3) I(f)(x) = N;/Q)/Omtaﬂ—lnf(az) dt
for f € LY(S) N LP(S),z € S.

Remark 2.1. We call 1, a fractional integral operator as it coincides with the classical
Riemann-Liouville operator when S = R and (T, t > 0) is the heat semigroup. We may
also regard it as the Mellin transform of the semigroup.

Lemma 2.1. The integral defining I,,(f) is absolutely convergent.

Proof. Fix x € S. We split the integral on the right hand side of (2.3) into integrals over the
regions 0 < ¢ < 1land 1 < ¢ < oo. Call these integrals J,, f(z) and K, f(z), respectively
so that I, f(z) = Jo f(z) + Ko f(x). Now

[Jaf (@) <

1 104/2—1 (o _2; (o 00

by finiteness of f*. Furthermore by (2.2) (with p = 1),

T Hf”l (a—m)—1 2||f‘|1 00
o015 gy [ = o <

and the result follows. O

The next result is stated in [26] p. 243, equation (0.11). We give a precise proof for the
reader’s convenience. Let — A be the (self-adjoint) infinitesimal generator of the semigroup
(Ty,t > 0) and assume that A is a positive operator in L2(S). For each v € R, we can
construct the self-adjoint operator A7 in L?(S) by functional calculus, and we denote its
domain in L?(S) by Dom(A7).

Theorem 2.2. Forall f € Dom(A~%)NLY(S),

in the sense of linear operators acting on L?(S)

Proof. We use the spectral theorem to write T; = fo e~ P(d)) for all t > 0 where P(- )
is the projection-valued measure associated to A. For all f € Dom(A~%),g € L2(S) w
have, using Fubini’s theorem

04 (I(f)g) = Q/Z [T e sgar
= (] ee) () serens)
= (A7%f,g)
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2.3. On Varopoulos’ theorem. The next result is essentially Theorem 3 in [26] (see also
section 1.2 of [27], Corollary 2.4.3 in [12] p.77 and Theorem 4.1 in [1 1]). Our proof will
follow the argument in [26] (see also [ 8] for a similar approach in the classical case). Our
assumption that the semigroup is self-adjoint means that the proof is much simpler than in
[26] and we are able to work with LP and L7 rather than the corresponding Hardy spaces.

Theorem 2.3. [Hardy-Littlewood—Sobolev] Suppose the semigroup T; has dimension n.

Let0 <a<mn, 1<p<Zand set% = % — 2. Then there exists Cp , o > 0 so that for
all f € LP(S),
(2.5 Ha(Nlla < Cpnall fllp-

Proof. Let§ > 0 to be chosen later. Let z € S be arbitrary and choose f € L!(S)NLP(S)
with f # 0. As in the proof of Lemma 2.1 we split I, f(z) = Jof(z) + Ko f(x) where
the integrals on the right hand side range from 1 to § and J to oo (respectively). Again
arguing as in the proof of Lemma 2.1, we find that

Tuf(o) < 21

ail"(aﬂ)f*(x)(ﬁ’

Now using (2.2) we obtain

[e.¢]
Kaf @] £ Cpma [ 575711,
9
< CpnadH I,

so that
o f (@) < Cpnalf*(@)02 + 6272 f]],).

()"

to minimize the right hand side gives
26 af(@)] < Cpma (F @)™ IFlIZP™ = Cpna (7 @) FII7™
Thus for 1 < p < = and using (2.1),

1T f1lE < ComallFIIGP9™ 7115

p(1+52

Crpall Al )

Crp.all fII5:

and the required result follows by density. O

Picking

IN

We now show how to obtain a Sobolev-type inequality as a corollary to Theorem 2.3.
Corollary 2.1. Forall 1 < p < n,f € Dom(A2) N LY(S), if A2f € LP(S) then
fe L5 (S) and

1
1l e, < CopallAZ flp-

Proof. Take av = 1 so that so that ¢ = %. Applying Theorem 2.2 within Theorem 2.3
yields ||A7%f”q < Crp1llfllp and so on replacing f with Az f we find that 1 fllg <

Cn,p,a | |A% f| |p as required. 0
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Remark 2.2. The domain condition in Corollary 2.1 may seem somewhat strange, but in
most cases of interest the operator A and the space S will be such that Dom(A)% NLY(SY)
contains a rich set of vectors such as Schwartz space (in R%) or the smooth functions of
compact support (on a manifold). In practice, we would only apply the inequality to vectors
in that set.

Note that in the case where n > 2 and p = 2 in Corollary 2.1 we have
Hf”% < CTL,Q,lg(f)a

where E(f) := (Af, f) is a Dirichlet form. If S is a complete Riemannian manifold with
bounded geometry (that satisfies our assumptions, see below) and —A is the Laplacian
A, then we have n = d, the dimension of the manifold, and the Sobolev inequality of
Corollary 2.1 takes a more familiar form (c.f. [21]).

3. SUBORDINATION FOR HEAT KERNELS IN EUCLIDEAN SPACE

In this section, we give examples on both Euclidean spaces and manifolds of non-
Gaussian kernels that yield (n, p)-ultracontractive semigroups. In each case these semi-
groups are generated by fractional powers of the Laplacian and are obtained by the tech-
nique of subordination.

3.1. Review of Subordination on Euclidean Space. For each o,t > 0, let kfa) : R4 x
R< — (0, 00) denote the heat kernel, i.e.

) B 1 |z —y[?)
(3.7) k7 (z,y) = (27Ta2t)d/2 eXp{ 9921 ,

for each 2,y € R%. Then k(7) € C>((0,00) x R? x R?) is the fundamental solution of
the heat equation:

ou o2

— = —Aul(t

ot~ 3 v
(where the Laplacian A acts on the first spatial variable in k). We will only be interested
in two values of ¢ in this paper; in this section we use o = v/2, which is the standard heat

kernel of analysis, and for the rest of the paper, o = 1 which is the heat kernel of standard

Brownian motion. To simplify notation we will write x; := k,gﬁ) and k; = kt(l) for all
t>0.

Ifu(0) = f € LP(RY)(1 < p < o0) then u(t) = T;f forall t > 0 where (T}, > 0) is
the (standard) heat semigroup defined by T f () = [gu f(y)rk¢(x, y)dy fort > 0,z € R,
with Ty = I.

Now let0 < 8 < 1 and foreacht > 0, let vf be the density of the 3-stable subordinator
which is defined uniquely via its Laplace transform by

/ e vy (s)ds = eityﬁv

0

for all y > 0. Consider the fractional partial differential equation:
Ju
— = —(=A)Pu(t
o= (=) u(t),

where for f € C°(R9),

~(=8) @) = K [ (fo ) = £@) = 1@y 1)z,
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where Kg 4 = 287=4/2D((d 4+ 28)/2)T(1 — B)~L. It is well known (see e.g. [1], [22])
that this equation has a fundamental solution ¢ which is obtained from the heat kernel by
the method of subordination in the sense of Bochner, i.e. for all ¢ > 0,

(3.8) o (2,y) = / bal, u? () ds.

It follows from the work of [9] that

(39) @} (@,y) < C (75 ntla - y[71%)

and as pointed out in ([16]), this is equivalent to the estimates

C T — —(d+2p)
(3.10) @ (@,y) < — <1+ | 1y> :

t28 5

Hence, these stable semigroups have dimension d/f in the sense of Varopoulos.

3.2. Stable-Type Transition Kernel on Manifolds. Much of the structure that we have
just described passes over to the case where Euclidean space R is replaced by a suitable
manifold. To be precise, let M be a complete Riemannian manifold of dimension d having
non-negative Ricci curvature. Let A be the Laplace-Beltrami operator and x be the Rie-
mannian volume measure. Then the heat equation: % = Au(t) again has a fundamental
solution p € C*°((0,00) x M x M) which we again call the heat kernel. Although there
is no precise formula for p we have the heat kernel bounds of Li and Yau [19], for all

t>0,z,y € M:

__Cc _p(z,y)2>
(311) pt(xvy) - V(£C7 \/1?) exp ( ot

where p is the Riemannian metric and for r > 0, V'(z, r') is the volume of the ball of radius
r centred on x. It is well known that for all x € M,

V(z,r) < v(d)r,
where v(d) is the volume of the unit ball in R? (see e.g. [8]). We make the following
assumption:

Assumption 3.1. There exists ¢, > 0 so that for all z € M,V (z,r) > ciré.

Note that as pointed out in [26, p. 255], Assumption 3.1 is equivalent to the following
variant on the classical isoperimetric inequality:

[ 1) P ptaa) < o ( / 1 IVf(x)IQM(dx)y ,

where ¢o > 0, forall f € C°(M).

We thus have that V' (x,r) < 7%, Now let us again consider the fractional partial dif-
ferential equation % = —(—A)Pu(t), on M where 0 < 3 < 1. Just as in the Euclidean
space case, the equation has a fundamental solution ¢” which is given by subordination,

ie. forallt > 0,2,y € M:

(3.12) o8 (,y) = / pe(, Y)Y (5)ds.

We can now generalise the estimates (3.10):
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Theorem 3.2. If Assumption 3.1 holds then for allt > 0,x,y € M

—(d+28)
C x,
¢f(x,y>xd(1+”( f’)) :

125 28

Proof. We apply subordination so using (3.12), (3.11) and monotonicity, we have

[e%e] 1 2
qﬁf(x,y) = C’/O gexp (_p(:c,y)) vf(s)ds.

CS

We fix 2,y € M and write A\ = p(z,y). Now make a change of variable s = 47“ and use
the scaling property (see e.g. [1], p.51)

1 1
V(b7 Fu) = by (w),

for all w > 0 where b = (2)5. Then we obtain
b = o[ k0.0 (w)d
oy (z,y) = o Ko (0, A) vy (w)du

= ap(0.),
by (3.8) and the result follows by using (3.10). [l

4. FRACTIONAL INTEGRALS AND MARTINGALE TRANSFORMS ON R¢

In this section we give a formula for I,,(f) as a martingale transform in the case of R?
and use this to give another proof of Theorem 2.3 based on martingale inequalities. Here
our semigroup is defined by

Tof@) = [ F@)k(a)dy

where we emphasise that from now on,
1 le—yl|?
ke(z,y) = ki(z —y) = We
Thus in the language our Assumption 2.1, this semigroup has dimension d, the same as the
space where it is defined. As before,

1 oo
4.13 I, =——— [ T f(x)dt = a
@13 @ = 773 |, () dt = o Ry
where * is convolution of functions and for all x € R,
I (=2
Ra,d(x) — ( 2 )

I(2)2%n% |z]d-o’
is the Riesz kernel (see e.g. [13], p.43). The last line is a simple computation once the
explicit expression for T; f as a convolution of f with k; is substituted in the formula for
1. Note that (up to a multiplicative constant) we recapture the classical Riemann-Liouville
fractional integral when d = 1. The operator I,, is sometimes called the Riesz potential
(see e.g. [18]).

Our first goal is to give a formula for 7, f as the conditional expectation of a stochastic
integral. For this we follow the exact same approach as the one presented in [6] which
represents the Beurling-Ahlfors operator as the projection of martingales with respect to
space-time Brownian motion. For further examples of this technique, see [2] and [4] and
the many references in these papers.



PROBABILISTIC APPROACH TO FRACTIONAL INTEGRALS AND THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

4.1. Stochastic Integral representation for I,. Let B; be Brownian motion in R?. For
f € S(R?) and fixed a > 0, which we think of as being very large, we consider the pair of
martingales up to time a given by

ant
(4.14) M}l(t):/ V(Tu—sf)(Bs) - dBs
0
and
alt
(4.15) M}"’O‘(t):/ (a— )V (Ta_sf)(By) - dBs.
0

We note that by the Itd formula,
(4.16) To i f(By) = T f(Bo) + M{(t), 0<t<a,

Standard calculations yield that the quadratic variation of these martingales are

alt
710 = [ 19T (B P
and
alt
MY = [ @) (B) P
Since forany 0 < s < t < a, (a — s)® < a®, we conclude that
[Mp®](t) < a*[MF](t),

for all 0 < ¢ < a. It follows that the continuous martingale M}I’O‘(t) is differentially
subordinate to a® M J‘?(t) ( see [4] for details) and so for any 1 < p < oo we have, by the
celebrated Burkholder’s inequalities, that

(4.17) 1M (a)[l, < a®(p" = D[ MF(allp, 1 <p <o,

{2 )
p* =max<p, —— .
p—1

We note, however, that while this holds for all 1 < p < oo, the bound depends on a and
this does not aid our quest to obtain a probabilistic proof of the Hardy-Littlewood-Sobolev
inequality. What we seek is an inequality of this type, but with a bound independent of
a, and this requires placing some restrictions on p, as in the Hardy-Littlewood-Sobolev
inequality.

Let us first determine the nature of the transformation giving rise to M }l’a (t). Sett =a
in (4.16) to obtain

where

“.18) J(Ba) = Tuf(Bo) + /0 V(Tu_of)(B.) - dB..
If g € S(R?), we have
(4.19) 9(Ba) / a(a — 8)2V(T,_.f)(Bs) - dBj

0

— Tug(Bo) /0 “(a— 82V (Tu_.f)(B,) - dB,

+ (/UGV(Ta_sg)(BS) ~st> (/Ua(a —5)**V(Ta—sf)(Bs) - st) :
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Observe further that the expectation of the first term is zero. That is,

E (Tagwo) / a5 PY(Tu ) (B st>

E. (Tag(Bw / "0 92V (Tuo)(By) -st) dn

/.
[ TustlE. ( / N0 - )PV (Tu o )(By) - st) da

Rd
= 0

where here and henceforth, E denotes the expectation of the Brownian motion with initial
distribution the Lebesgue measure. (See [6] for more on this construction.) Thus by Itd’s
isometry,

420) E (g(Ba) / 0 - )PV o f)(By) st)
- E ( /0 V(Tuoag)(By) «d&) ( /O (0 9PV (Tu . f)(BY) -st)
= ([ @98 V) (B)05)

For f, a and « as above, we define for all z € R4,

4.21) S*f(z)=E </Oa(a — 8)Y?V(Ty_sf)(By) - dBs | B, = :17) )

Theorem 4.1. Forall f € S(R?),z € R?

(4.22) S»f(z) = — / " 52T (AT, f)(x)ds

0

and as a — 00,
(4.23) S f(x) = cala(f)(x).

almost everywhere, where c,, > 0 depends only on c.

Proof. We first observe that for f € S(R?) we have

/Rd ( s J(Z)pa(x — ;f:)dj-) du
/Rd f(%)di.

&
—~
~
—~

oy
e
S—

Il
%\
&

&=
8
=

™
)
=

IS

8

Il

(4.24)
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Let g € S(R?). Then, by the above calculations, integration by parts and self-adjointness
of the semigroup, we have

[ serwaas = [ 5([@- 02V 8 - ab.| B, =) gta)is
= E <]E </“(as)°‘/2v( wsf)(Bs) - dBy | B@) g(Ba)>

E E( O PY(T, L f)(B )-st) Ba>

(
(g( o) — 8)*/2V(Tues f)(Bs) - d )
S

|
=

[ a—swv (Tu e D)B) - V(L) ()5

0

= [Her [ vpw vitg @) as

/{ 2 | AT @) T )dx}ds

[ [ namp@ato ) as
-/ { [ s, <A<Tsf>><x>ds}g<x>dx.

This completes the proof of (4.22).
Now recall that 2T} f = AT, f. Write u(t,-) = T} f, then 2 siu(t,-) = Au(t,-) and so

%u(?t, ) =2u'(2t,-) = 2Au(2t, ).
This gives that
1 d
ATy, f = T2sf
and hence
s" @) = = [ AT f@)ds
0
1 [ ., dDf
- _- a/2 8425
5 /0 s I (z)ds

= _%aa/zj—éaf(x) + % / SQ/Q_ITQSf(x)dS
0

Since T, f(z)] < d/z IIf|l1 and 0 < & < d, @ — o0, the right hand side of the previous
equality goes to

(67

1 /C>O s 71Ty fx)ds = 27" al' (a/2) I f(x)
0

and this proves (4.23). U
Remark 4.1. This derivation works in the setting of the manifolds studied in [5]; see the

proof of Lemma 3.2 in that paper. Hence it will also work on Lie groups as in [2]. These
directions will not be explored in this paper.
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Our goal is now to use the formula in (4.22) to give a proof of Hardy-Littlewood-
Sobolev inequality in Theorem 2.3 using martingale inequalities. We begin with the fol-
lowing simple proposition which follows just by differentiation of the Gaussian kernel.
We give its proof for completeness. We use the notation k:(z) := k¢(x,0) for each
zeRLt>0.

Proposition 4.1. Forall x € R%,t > 0,

1
(4.25) Voki(z)] < 275 7
Proof. We start by observing that

Voki(z) = — (ﬂ ﬂ) k()

t’ t
so that
L [|zf?
V.k < ——
[Vake(2)] < iV ()
1 [lz)2 1 =2

— 4= I 2t
ViVt (2atydr©
We now claim that the right hand side is dominated by 25" %k/’gt(.’lﬁ). To see this,

|z|?

observe that if 4/ ﬁ < 1, then the right hand side is dominated by %W@’ ze . If

(L2
a= ‘Il > 1, then a < a? = 4(a/2)? < 4e'T and the right hand side is dominated by
1 1 o | |o|? 1 1 le|?
4—_ —  mrt ) gy~ o
Vi @) 72" Vi @)

2
Since e 2zt < e "ar , we see that in either case, the right hand side of (4.25) is dominated
by

1 1 |2 ara 1
477 - t = 2 7](;
Vit (2mt)d/2 ¢ ’ Vit 2(2)
and this completes the proof. (]

Remark 4.2. The estimate (4.25) which is the key to the calculations below holds more
widely on manifolds, see [19], [3] for much more on these type of bounds on heat kernels.

We now fix 0 < « <dandset% :%77 for 1 < p < oo, and as always work with

functions in S(RY). We assume that a is very large but fixed for now. By the classical
Burkholder-Gundy inequalities there is a constant C;; independent of a so that forall t > a

el = | [ @02V s

([ a-servi.ne >2ds)1/2

where, as in (4.24), forall 1 < p < oo, h € LP(R%),t > 0,

(4.26)

IN

Cq

)
q

1

B0l = EE)? = ([ ieras)” =l
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Lemma 4.1. Let 0 > 0 be arbitrary. Then there exists C1,Co > 0 so that
4.27)

a 2
/O(a—s)“lV(Ta_sf)(Bs)IzdsSCH<sup I(T2<a_s>|f|)(Bs)|> 5 +Col| f]|262 /P,

0<s<a

Proof. There are two cases to consider:
Case 1: 6 > a. Using the estimate of Proposition 4.1 for the derivative of the heat
kernel, for some c; > 0 depending only on d,

[ -9 W@ nBoPas < e [ a9t B o DB Ps
0 0

< e sup |(Toaos /) (B)P / (a—s)*lds
0<s<a 0

)
< 1 sup |(Tagaoslf)(BS)P / @ 1ds
0<s<a 0

c
< = sup [(Taa—s)|lF)(B)P0%,

 0<s<a

and the estimate (4.27) holds with Cy = 0.
Case 2: § < a. Here, as before, write

/ (0= ) V(Lo £)(BL)[2 ds

/0 SV (T 1) (Ba_s) [ ds

)
/0 SV (TLl 1) (Ba_s) [ ds

a
b [ @I B ds
)
= I+1I
Note that by Proposition 4.1 again for some ¢, > 0 depending only on d,

é
IS [ sl (B
0
)
(4.28) < ¢y sup \(Tgs|f|)(Ba_s)|2/ s lds
0<s<8 0

C a
< 2 sup |T2(afs)|f‘)(Bs)|26
& 0<s<a

Next we use the estimate of Proposition 4.1 and the assumption (2.2) on the (d, p)-
ultracontractivity of the semigroup to conclude that

VL) Bamo)? < 2U(Toal f)(Bas)* < i 1112

and therefore,

@ 1
2
1< allfl | s
4.29 < 2 [* L d
(4.29) > CSHpr s sd/pﬁ S
< ollfIseP.

The result follows. O
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Using Lemma 4.1 we see that

1/2

( [ @-seva .o >|2ds) < Cuaa SUp [Taaeslf](BL))5°"
0 0<s<a
(4.30) + Cpadllfll, 6%,

Minimizing this inequality in ¢ as before, we find that

1/2

@31) ([ = orwaiiras)

IN

l—ap/d
cpﬂ,d( sup |<T2<H>f><Bs>) B

0<s<a

p
C( sup |<T2<a_s>|f|><Bs>> 17117/,
0<s<a

where the constant C), , 4 depends only on the parameters indicated. In particular (and this
is important), this constant does not depend on a.

Remark 4.3. We remark that the value of § that minimises (4.30) depends on w € ),
however the generality of Lemma 4.1 ensures the validity of this procedure.

Lemma 4.2. For1 < p < oo, f € S(RY), and all a > 0 there is a constant C,, indepen-
dent of a such that

@3 | (s (@B ) | <Gl

where the norm is taken with respect to the expectation E as above.

Proof. Forall 0 < t < a, define Y;(f) := To(q—s) f(Bt). We first show that (Y;(f),0 <
t < a) is a martingale. Define the process { M;(f),0 <t < a} by

t
= / VTQ(a—s)f(Bs) -dB
0

Then this process is a local martingale. To see that it is in fact a martingale, its enough
to show that it is square-integrable. Using Itd’s isometry, Proposition 4.1 and the (d, p)-
ultracontractivity assumption (2.2), we find that forall 0 < ¢ < a,

E(M(f)?) = / E(VTh(a_sf(Bo)?)ds
t
< %A aiSE(Tél(a—s)f(BsF)ds
< clufnp/(a—s)*%*ds

= Gllfllplla—t)"% —a"?] < oo
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By It6’s formula

Yif) = Yolf)+Mi(f) - = / ATya_of(Bs)ds

YO(f) + Mt / ds T2(a s)f )

= Taf(Bo) + Milf) + J%il) — {Toa (Bo),
from which we deduce that
Yi(f) = %Mt(f) + Toa f(Bo).

Hence {Y:(f),0 <t < a} is a martingale.
Note that by (4.24) E(|f(Ba)|?) = | f|}. Using this together with Doob’s maximal
inequality we find that

(s (T3P

0<s<a

E <oi§5a IYs(f)|p>
(-2) vt
(L) s
(25)

and this gives the desired inequality. (]

’6

Corollary 4.1. For1l < p < oo,
(433) H ( sup [(Ta(a—s)|1)(B ) |, <2611l
0<s<a

Proof. Let fi = max{f,0} and f_ = max{—f,0}. By the smoothing effect of the
semigroup we may apply (4.32) where f is replaced by f; and f_ (respectively) and then

we have
H < Sup | TQ(a 9)|f| ) H
< H ( sup |T2 (a— s)f+ ) H + H ( sup |(T2(a—s)f)(BS)>
0<s<a 0<s<a P
< Collf+llp +1f-1p) < 2Cp[1 fllp,
which gives the result. U

We now proceed to show how a probabilistic proof of Theorem 2.3 for the heat semi-
group follows from our constructions. Recall that n = d in this case, fix 0 < o < d
andset L = 1 — 2 for 1 < p < co. By Theorem 4.1, the contraction of the L? norm
by the conditional expectatlon and the classical Burkholder-Gundy inequalities, there is a

constant C,, independent of a so that for all f € S(R?),
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IN

(4.34) st i,

| [[a= v nm as.|,

([ - wa e >|2ds) I

where the norm on the left hand side is on R¢ with respect to the Lebesgue measure and
the right hand side is with respect to E.
By inequality (4.31) and Corollary 4.1,

1/2

IN

Cq

)

a 1/2 o
43y || ([@- 9 v@en@ors) | < Guuadfing
= Cpadllfllp,

Since this bound does not depend on a, letting a — oo and applying Fatou’s lemma,
Theorem 4.1 and the density of S(R?) in L(R%) gives the result.

An alternative stochastic representation can be carried out using the Gundy-Varopoulos
[14] construction instead of the space-time Brownian process (B, a — t),0 < t < a
from [6]. Such a construction will also work on a manifold. But even more, this con-
struction will work for any semigroup which, in addition to the ultracontractivity property
Tif(7)] < &= —C1If 1, satisfies the assumptions of Varopoulos [25]. We briefly explain the
construction on R?. We let T} be the heat semigroup and construct its Poisson semigroup
by subordination with 5 = 1/2 as in §3 above. We denote this semigroup by P; and to
conform to more classical notation, we use y > 0 in place of . Hence the semigroup is
denoted by P,. Given f € S(RY) we set us(z,y) = P,f(z), y > 0, z € R% again
to conform to the standard notation. We again fix a large a > 0 and let Z; = (B;,Y;)
be Brownian motion in Rf‘l starting on the hyperplane (z, a) with initial distribution the
Lebesgue measure. That is, we start at each point (z, a) and integrate the initial distribution
with respect to . This gives expectation which we denote by E®. If we let

=inf{t >0:Y; =0},
then we see that for any f € S(R?),

E'f(B.) = | f)d

just as before.
For f, a and « as above, we define

(4.36) T f( (/ Y@ Bt,y;)de _:c>.

Theorem 4.2. Forall f € S(R?), as a — oo
(4.37) T"f = Calaf,

for some constant C,, in the sense that
(4.38) T f(x)g(z)dx — Cy | Inf(x)g(x)dx
R R

foall f,g € S(R?).
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The proof of this Theorem is exactly the same as the proof given in [4, §3.4] for the
representation of the Riesz transforms and we leave it to the reader. We also refer the reader
to [25] where these type of arguments are presented for general semigroups. In particular,
the same argument will work if instead of R? we take a manifold A/ with a Brownian
motion X; and consider the space M x (0, o) with the Brownian motion (X3, Y;) where
Y; is a one dimensional Brownian motion killed the first time it hits 0.
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the ground during the summer of 2012. Both authors would like to thank Krzysztof Bogdan
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