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ABSTRACT. We give a short summary of Varopoulos’ generalised Hardy-Littlewood-
Sobolev inequality for self-adjoint C0 semigroups and give a new probabilistic repre-
sentation of the classical fractional integral operators on Rn as projections of martingale
transforms. Using this formula we derive a new proof of the classical Hardy-Littlewood-
Sobolev inequality based on Burkholder-Gundy and Doob’s inequalities for martingales.
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1. INTRODUCTION

As is evident from the many recent papers on martingale transforms and their applica-
tions to singular integral operators and Fourier multipliers on Rd (see [2], [4], [5], [7], [10],
[15], [20], for example), martingale inequalities can be very effectively used to study many
operators in analysis which on the surface do not appear related to probability at all. This
point of view often leads to sharp estimates and provides new insight into the behavior of
the operators. Even when the estimates are not sharp, this approach can help clarify how
such bounds may depend on the geometry of the space where the operators are defined. For
the latter point, see for example [5] where bounds are proved for operators on manifolds
with no geometric assumptions on the manifold. In this paper we provide a probabilis-
tic representation for the fractional integral operators on Rd as projections of martingale
transforms and use this representation to give a stochastic analytic proof of the classical
Hardy-Littlewood-Sobolev inequality, i.e. for the heat semigroup. Once the representation
is obatined, our proof follows from the classical Burkholder-Gundy inequalities and from
Doob’s inequality. Judging from previous similar representations for singular integrals,
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one expects that when this representation is better understood, one would get better (and
perhaps explicit) bounds for the constants given below, this time in terms of the dimension
of the semigroup, which plays a crucial role on this theory.

The Hardy-Littlewood-Sobolev inequality has been extended to the general setting of
C0-semigroups by Varopoulos in [26] and these extensions have been widely studied by
many researcher for several years. In order to make this paper as self-contained as pos-
sible and to give the non-expert a sense of the level of generality on the validity of the
Hardy-Littlewood-Sobolev inequality, we review Varopoulos’ general approach in §2. The
assumption that the semigroup is self-adjoint (which covers a wide range of examples that
are interesting to both analysts and probabilists), enables us to simplify the proof by us-
ing Stein’s maximal ergodic theorem [23]. To further illustrate with examples, we present
some subordinated semigroups in §3. In §4, we restrict our attention to the heat semigroup,
obtain the probabilistic representation for the corresponding fractional integrals on Rd, and
give the probabilistic proof of the Hardy-Littlewood-Sobolev inequality. Such a represen-
tation and proof of the Hardy-Littlewood-Sobolev inequality, in terms of the space-time
Brownian motion first studied in [6], applies to manifolds with certain assumption on their
geometry. On the other hand, since it involves the gradient operator it does not apply (at
least not directly) to more general semigroups. For the semigroups studied in [25], an alter-
nate stochastic representation holds in terms of the construction of Gundy and Varopoulos
[14]. Such a representation is discussed at the end of §4.

Notation. Let S be a metric space with metric ρ, g be a function from S × S to (0,∞)
and h be a function from (0,∞) to (0,∞). Throughout this work we use the notation
g(x, y) � Ch

(
ρ(x,y)
c

)
to mean that there exist C1, C2, c1, c2 > 0 so that

C1h

(
ρ(x, y)

c1

)
≤ g(x, y) ≤ C2h

(
ρ(x, y)

c2

)
,

for all x, y ∈ S. Note that the values of Ci and ci(i = 1, 2) may change from line to line.
We will denote the Schwartz space of rapidly decreasing functions on Rd by S(Rd) . Note
that it is dense in Lp(Rd) for all 1 ≤ p <∞.

2. THE HARDY-LITTLEWOOD-SOBOLEV THEOREM AND VAROPOULOS DIMENSION

2.1. The (n, p)–ultracontractivity assumption. Let (S,S, µ) to be a measure space and
let Lp(S) := Lp(S,S, µ;R). We assume that there is a family of linear operators (Tt, t ≥
0) which are contraction semigroups on Lp(S) for all 1 ≤ p ≤ ∞. However we only
assume that the semigroup is strongly continuous in the case p = 2. We further assume
that Tt is self-adjoint on L2(S) for all t ≥ 0.

In the proof of Theorem 2.3 below, we will make use of the fact (as is shown in [23]),
that for all 1 < p <∞ there exists Dp > 0 so that for all f ∈ Lp(S),

(2.1) ||f∗||p ≤ Dp||f ||p,

where for all x ∈ S, f∗(x) = supt>0 |Ttf(x)|. Note also that f∗ is a well-defined measur-
able function.

We make the following assumption, which as we shall see, is satisfied by many semi-
groups.

Assumption 2.1 ((n, p)-ultracontractivity). There exists an n > 0 (not required to be an
integer) such that for all 1 ≤ p < ∞, there exists Cp,n > 0 so that for all t > 0, f ∈
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Lp(S),

(2.2) ||Ttf ||∞ ≤ Cp,nt−
n
2p ||f ||p.

Following Varopoulos’ terminology, the number n will be referred to as the dimension of
the semigroup Tt.

Note that the semigroup (Tt, t ≥ 0) is then ultracontractive as defined, for example in
[12]. That is, Tt : L1(S) → L∞(S) for all t > 0. We now examine (2.2) from the point
of view of semigroups that are integral operators with positive kernels. If (2.2) holds and
we assume that the semigroup is L2 positivity-preserving, i.e. that for all f ∈ L2(S) with
f ≥ 0 (a.e.) we have Ttf ≥ 0 (a.e.) for all t > 0, it follows from [12] pp.59-60 that the
semigroup has a symmetric kernel k : (0,∞)× S × S → [0,∞) so that

Ttf(x) =

∫
S

f(y)kt(x, y)µ(dy),

for all f ∈ Lp(S), x ∈ S, t > 0 and moreover

sup
x,y∈S

kt(x, y) ≤ ct

where the mapping t→ ct is monotonic decreasing on (0,∞) with limt→0 ct =∞.
Conversely suppose the semigroup (Tt, t ≥ 0) is given by a kernel so that

Ttf(x) =

∫
S

f(y)kt(x, y)µ(dy)

for all x ∈ S, f ∈ Lp(S), 1 ≤ p ≤ ∞. Assume that the kernel k ∈ C((0,∞) × S × S)
and is also such that

•
∫
S
kt(x, y)µ(dy) = 1 for all t > 0, x ∈ S (so that kt(x, ·) is the density, with

respect to the reference measure µ, of a probability measure on S),
• There exists C > 0 so that for all t > 0, x, y ∈ S,

kt(x, y) ≤ Ct−n2 ,

• kt is symmetric for all t > 0, i.e. kt(x, y) = kt(y, x) for all x, y ∈ S.

Then (2.2) is satisfied since by Jensen’s inequality, for all 1 ≤ p <∞, x ∈ S, t > 0

|Ttf(x)|p =

∣∣∣∣∫
S

f(y)kt(x, y)µ(dy)

∣∣∣∣p
≤

∫
S

|f(y)|pkt(x, y)µ(dy)

≤ Ct−
n
2 ||f ||pp,

and so
||Ttf ||∞ ≤ C

1
p t−

n
2p ||f ||p.

In particular, this condition is satisfied by the heat kernel on certain Riemannian mani-
folds where n = d, the dimension, and on some classes of fractals where n = 2αβ where
α is the Hausdorff dimension and β is the walk dimension (see e.g. [17]). As discussed in
§3 it holds for the β-stable transition kernel on Euclidean space and a class of Riemann-
ian manifolds where n = d

β . It also holds for strictly elliptic operators on domains in
Euclidean space (see [12] Theorem 2.3.6, pp.73-4).
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2.2. Fractional Integral Operators. Fix 1 ≤ p < ∞ and for any 0 < α < n define a
linear operator Iα, called the fractional integral of f , by

(2.3) Iα(f)(x) =
1

Γ(α/2)

∫ ∞
0

tα/2−1Ttf(x) dt,

for f ∈ L1(S) ∩ Lp(S), x ∈ S.

Remark 2.1. We call Iα a fractional integral operator as it coincides with the classical
Riemann-Liouville operator when S = R and (Tt, t ≥ 0) is the heat semigroup. We may
also regard it as the Mellin transform of the semigroup.

Lemma 2.1. The integral defining Iα(f) is absolutely convergent.

Proof. Fix x ∈ S. We split the integral on the right hand side of (2.3) into integrals over the
regions 0 ≤ t ≤ 1 and 1 < t ≤ ∞. Call these integrals Jαf(x) and Kαf(x), respectively
so that Iαf(x) = Jαf(x) +Kαf(x). Now

|Jαf(x)| ≤ 1

Γ(α/2)

∫ 1

0

tα/2−1f∗(x)dt =
2

α

1

Γ(α/2)
f∗(x) <∞,

by finiteness of f∗. Furthermore by (2.2) (with p = 1),

|Kαf(x)| ≤ C1
||f ||1

Γ(α/2)

∫ ∞
1

t
1
2 (α−n)−1dt =

2||f ||1
(n− α)Γ(α/2)

<∞,

and the result follows. �

The next result is stated in [26] p. 243, equation (0.11). We give a precise proof for the
reader’s convenience. Let−A be the (self-adjoint) infinitesimal generator of the semigroup
(Tt, t ≥ 0) and assume that A is a positive operator in L2(S). For each γ ∈ R, we can
construct the self-adjoint operator Aγ in L2(S) by functional calculus, and we denote its
domain in L2(S) by Dom(Aγ).

Theorem 2.2. For all f ∈ Dom(A−
α
2 ) ∩ L1(S),

Iα(f) = A−
α
2 f,

in the sense of linear operators acting on L2(S)

Proof. We use the spectral theorem to write Tt =
∫∞
0
e−tλP (dλ) for all t ≥ 0 where P (·)

is the projection-valued measure associated to A. For all f ∈ Dom(A−
α
2 ), g ∈ L2(S) we

have, using Fubini’s theorem

〈Iα(f), g〉 =
1

Γ(α/2)

∫ ∞
0

∫ ∞
0

tα/2−1e−λt〈P (dλ)f, g〉dt(2.4)

=
1

Γ(α/2)

(∫ ∞
0

tα/2−1e−tdt

)(∫ ∞
0

1

λ
α
2
〈P (dλ)f, g〉

)
= 〈A−α2 f, g〉

�
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2.3. On Varopoulos’ theorem. The next result is essentially Theorem 3 in [26] (see also
section II.2 of [27], Corollary 2.4.3 in [12] p.77 and Theorem 4.1 in [11]). Our proof will
follow the argument in [26] (see also [18] for a similar approach in the classical case). Our
assumption that the semigroup is self-adjoint means that the proof is much simpler than in
[26] and we are able to work with Lp and Lq rather than the corresponding Hardy spaces.

Theorem 2.3. [Hardy–Littlewood–Sobolev] Suppose the semigroup Tt has dimension n.
Let 0 < α < n, 1 < p < n

α and set 1
q = 1

p −
α
n . Then there exists Cp,n,α > 0 so that for

all f ∈ Lp(S),

(2.5) ||Iα(f)||q ≤ Cp,n,α||f ||p.

Proof. Let δ > 0 to be chosen later. Let x ∈ S be arbitrary and choose f ∈ L1(S)∩Lp(S)
with f 6= 0. As in the proof of Lemma 2.1 we split Iαf(x) = Jαf(x) + Kαf(x) where
the integrals on the right hand side range from 1 to δ and δ to ∞ (respectively). Again
arguing as in the proof of Lemma 2.1, we find that

|Jαf(x)| ≤ 2

α

1

Γ(α/2)
f∗(x)δ

α
2 ,

Now using (2.2) we obtain

|Kαf(x)| ≤ Cp,n,α

∫ ∞
δ

t
α
2−

n
2p−1||f ||p

≤ Cp,n,αδ
α
2−

n
2p ||f ||p,

so that
|Iαf(x)| ≤ Cp,n,α(f∗(x)δ

α
2 + δ

α
2−

n
2p ||f ||p).

Picking

δ =

(
||f ||p
f∗(x)

)2p/n

to minimize the right hand side gives

(2.6) |Iαf(x)| ≤ Cp,n,α (f∗(x))
1−αp/n ||f ||αp/np = Cp,n,α (f∗(x))

p/q ||f ||αp/np .

Thus for 1 < p < n
α and using (2.1),

||Iαf ||qq ≤ Cp,n,α||f ||αpq/np ||f∗||pp

≤ Cn,p,α||f ||
p(1+αq

n )
p

= Cn,p,α||f ||qp,

and the required result follows by density. �

We now show how to obtain a Sobolev-type inequality as a corollary to Theorem 2.3.

Corollary 2.1. For all 1 < p < n, f ∈ Dom(A
1
2 ) ∩ L1(S), if A

1
2 f ∈ Lp(S) then

f ∈ L
np
n−p (S) and

||f || np
n−p
≤ Cn,p,1||A

1
2 f ||p.

Proof. Take α = 1 so that so that q = np
n−p . Applying Theorem 2.2 within Theorem 2.3

yields ||A− 1
2 f ||q ≤ Cn,p,1||f ||p and so on replacing f with A

1
2 f we find that ||f ||q ≤

Cn,p,α||A
α
2 f ||p as required. �
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Remark 2.2. The domain condition in Corollary 2.1 may seem somewhat strange, but in
most cases of interest the operator A and the space S will be such that Dom(A)

1
2 ∩L1(S)

contains a rich set of vectors such as Schwartz space (in Rd) or the smooth functions of
compact support (on a manifold). In practice, we would only apply the inequality to vectors
in that set.

Note that in the case where n > 2 and p = 2 in Corollary 2.1 we have

||f || 2n
n−2
≤ Cn,2,1E(f),

where E(f) := 〈Af, f〉 is a Dirichlet form. If S is a complete Riemannian manifold with
bounded geometry (that satisfies our assumptions, see below) and −A is the Laplacian
∆, then we have n = d, the dimension of the manifold, and the Sobolev inequality of
Corollary 2.1 takes a more familiar form (c.f. [21]).

3. SUBORDINATION FOR HEAT KERNELS IN EUCLIDEAN SPACE

In this section, we give examples on both Euclidean spaces and manifolds of non-
Gaussian kernels that yield (n, p)-ultracontractive semigroups. In each case these semi-
groups are generated by fractional powers of the Laplacian and are obtained by the tech-
nique of subordination.

3.1. Review of Subordination on Euclidean Space. For each σ, t > 0, let k(σ)t : Rd ×
Rd → (0,∞) denote the heat kernel, i.e.

(3.7) k
(σ)
t (x, y) =

1

(2πσ2t)
d/2

exp

{
|x− y|2)

2σ2t

}
,

for each x, y ∈ Rd. Then k(σ) ∈ C∞((0,∞) × Rd × Rd) is the fundamental solution of
the heat equation:

∂u

∂t
=
σ2

2
∆u(t)

(where the Laplacian ∆ acts on the first spatial variable in k). We will only be interested
in two values of σ in this paper; in this section we use σ =

√
2, which is the standard heat

kernel of analysis, and for the rest of the paper, σ = 1 which is the heat kernel of standard
Brownian motion. To simplify notation we will write κt := k

(
√
2)

t and kt := k
(1)
t for all

t > 0.
If u(0) = f ∈ Lp(Rd)(1 ≤ p <∞) then u(t) = Ttf for all t ≥ 0 where (Tt, t ≥ 0) is

the (standard) heat semigroup defined by Ttf(x) =
∫
Rd f(y)κt(x, y)dy for t > 0, x ∈ Rd,

with T0 = I .
Now let 0 < β < 1 and for each t > 0, let γβt be the density of the β-stable subordinator

which is defined uniquely via its Laplace transform by∫ ∞
0

e−ysγβt (s)ds = e−ty
β

,

for all y > 0. Consider the fractional partial differential equation:

∂u

∂t
= −(−∆)βu(t),

where for f ∈ C∞c (Rd),

−(−∆)βf(x) = Kβ,d

∫
Rd

(f(x+ y)− f(x)− yi∂if(x)1|y|<1)
1

yd+2β
dy,
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where Kβ,d = 2βπ−d/2Γ((d + 2β)/2)Γ(1 − β)−1. It is well known (see e.g. [1], [22])
that this equation has a fundamental solution qβ which is obtained from the heat kernel by
the method of subordination in the sense of Bochner, i.e. for all t > 0,

(3.8) qβt (x, y) =

∫ ∞
0

κs(x, y)γβt (s)ds.

It follows from the work of [9] that

(3.9) qβt (x, y) � C
(
t−

d
2β ∧ t|x− y|−d−2β

)
and as pointed out in ([16]), this is equivalent to the estimates

(3.10) qβt (x, y) � C

t
d
2β

(
1 +
|x− y|
t

1
2β

)−(d+2β)

.

Hence, these stable semigroups have dimension d/β in the sense of Varopoulos.

3.2. Stable-Type Transition Kernel on Manifolds. Much of the structure that we have
just described passes over to the case where Euclidean space Rd is replaced by a suitable
manifold. To be precise, let M be a complete Riemannian manifold of dimension d having
non-negative Ricci curvature. Let ∆ be the Laplace-Beltrami operator and µ be the Rie-
mannian volume measure. Then the heat equation: ∂u

∂t = ∆u(t) again has a fundamental
solution p ∈ C∞((0,∞)×M ×M) which we again call the heat kernel. Although there
is no precise formula for p we have the heat kernel bounds of Li and Yau [19], for all
t > 0, x, y ∈M :

(3.11) pt(x, y) � C

V (x,
√
t)

exp

(
−ρ(x, y)2

ct

)
where ρ is the Riemannian metric and for r > 0, V (x, r) is the volume of the ball of radius
r centred on x. It is well known that for all x ∈M ,

V (x, r) ≤ v(d)rd,

where v(d) is the volume of the unit ball in Rd (see e.g. [8]). We make the following
assumption:

Assumption 3.1. There exists c1 > 0 so that for all x ∈M,V (x, r) ≥ c1rd.

Note that as pointed out in [26, p. 255], Assumption 3.1 is equivalent to the following
variant on the classical isoperimetric inequality:∫

M

|f(x)|
2d
d−2µ(dx) ≤ c2

(∫
M

|∇f(x)|2µ(dx)

) 1
2

,

where c2 > 0, for all f ∈ C∞c (M).
We thus have that V (x, r) � rd. Now let us again consider the fractional partial dif-

ferential equation ∂u
∂t = −(−∆)βu(t), on M where 0 < β < 1. Just as in the Euclidean

space case, the equation has a fundamental solution φβ which is given by subordination,
i.e. for all t > 0, x, y ∈M :

(3.12) φβt (x, y) =

∫ ∞
0

ps(x, y)γβt (s)ds.

We can now generalise the estimates (3.10):
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Theorem 3.2. If Assumption 3.1 holds then for all t > 0, x, y ∈M

φβt (x, y) � C

t
d
2β

(
1 +

ρ(x, y)

t
1
2β

)−(d+2β)

.

Proof. We apply subordination so using (3.12), (3.11) and monotonicity, we have

φβt (x, y) � C
∫ ∞
0

1

s
d
2

exp

(
−ρ(x, y)2

cs

)
γβt (s)ds.

We fix x, y ∈ M and write λ = ρ(x, y). Now make a change of variable s = 4u
c and use

the scaling property (see e.g. [1], p.51)

γβt (b−
1
β u) = b

1
β γβbt(u),

for all u > 0 where b =
(
c
4

)β
. Then we obtain

φβt (x, y) � C

∫ ∞
0

κu(0, λ)γβbt(u)du

= qβbt(0, λ),

by (3.8) and the result follows by using (3.10). �

4. FRACTIONAL INTEGRALS AND MARTINGALE TRANSFORMS ON Rd

In this section we give a formula for Iα(f) as a martingale transform in the case of Rd
and use this to give another proof of Theorem 2.3 based on martingale inequalities. Here
our semigroup is defined by

Ttf(x) =

∫
Rd
f(y)kt(x, y)dy

where we emphasise that from now on,

kt(x, y) = kt(x− y) =
1

(2πt)d/2
e
|x−y|2

2t .

Thus in the language our Assumption 2.1, this semigroup has dimension d, the same as the
space where it is defined. As before,

(4.13) Iα(f)(x) =
1

Γ(α/2)

∫ ∞
0

tα/2−1Ttf(x) dt = f ∗Rα,d

where ∗ is convolution of functions and for all x ∈ R,

Rα,d(x) =
Γ
(
d−α
2

)
Γ
(
α
2

)
2
α
2 π

d
2 |x|d−α

,

is the Riesz kernel (see e.g. [13], p.43). The last line is a simple computation once the
explicit expression for Ttf as a convolution of f with kt is substituted in the formula for
Iα. Note that (up to a multiplicative constant) we recapture the classical Riemann-Liouville
fractional integral when d = 1. The operator Iα is sometimes called the Riesz potential
(see e.g. [18]).

Our first goal is to give a formula for Iαf as the conditional expectation of a stochastic
integral. For this we follow the exact same approach as the one presented in [6] which
represents the Beurling-Ahlfors operator as the projection of martingales with respect to
space-time Brownian motion. For further examples of this technique, see [2] and [4] and
the many references in these papers.
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4.1. Stochastic Integral representation for Iα. Let Bt be Brownian motion in Rd. For
f ∈ S(Rd) and fixed a > 0, which we think of as being very large, we consider the pair of
martingales up to time a given by

(4.14) Ma
f (t) =

∫ a∧t

0

∇(Ta−sf)(Bs) · dBs

and

(4.15) Ma,α
f (t) =

∫ a∧t

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs.

We note that by the Itô formula,

(4.16) Ta−tf(Bt) = Taf(B0) +Ma
f (t), 0 < t ≤ a,

Standard calculations yield that the quadratic variation of these martingales are

[Ma
f ](t) =

∫ a∧t

0

|∇(Ta−sf)(Bs)|2ds

and

[Ma,α
f ](t) =

∫ a∧t

0

(a− s)α|∇(Ta−sf)(Bs)|2ds.

Since for any 0 < s < t ≤ a, (a− s)α < aα, we conclude that

[Ma,α
f ](t) ≤ aα[Ma

f ](t),

for all 0 < t ≤ a. It follows that the continuous martingale Ma,α
f (t) is differentially

subordinate to aαMa
f (t) ( see [4] for details) and so for any 1 < p < ∞ we have, by the

celebrated Burkholder’s inequalities, that

(4.17) ‖Ma,α
f (a)‖p ≤ aα(p∗ − 1)‖Ma

f (a‖p, 1 < p <∞,

where

p∗ = max

{
p,

p

p− 1

}
.

We note, however, that while this holds for all 1 < p < ∞, the bound depends on a and
this does not aid our quest to obtain a probabilistic proof of the Hardy-Littlewood-Sobolev
inequality. What we seek is an inequality of this type, but with a bound independent of
a, and this requires placing some restrictions on p, as in the Hardy-Littlewood-Sobolev
inequality.

Let us first determine the nature of the transformation giving rise to Ma,α
f (t). Set t = a

in (4.16) to obtain

(4.18) f(Ba) = Taf(B0) +

∫ a

0

∇(Ta−sf)(Bs) · dBs.

If g ∈ S(Rd), we have

g(Ba)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs(4.19)

= Tag(B0)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs

+

(∫ a

0

∇(Ta−sg)(Bs) · dBs
)(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)
.
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Observe further that the expectation of the first term is zero. That is,

E
(
Tag(B0)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)

=

∫
Rd

Ex
(
Tag(B0)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)
dx

=

∫
Rd
Tag(x)Ex

(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)
dx

= 0

where here and henceforth, E denotes the expectation of the Brownian motion with initial
distribution the Lebesgue measure. (See [6] for more on this construction.) Thus by Itô’s
isometry,

E
(
g(Ba)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)

(4.20)

= E
(∫ a

0

∇(Ta−sg)(Bs) · dBs
)(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)

= E
(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · ∇(Ta−sg)(Bs)ds

)

For f , a and α as above, we define for all x ∈ Rd,

(4.21) Sa,αf(x) = E
(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs | Ba = x

)
.

Theorem 4.1. For all f ∈ S(Rd), x ∈ Rd

(4.22) Sa,αf(x) = −
∫ a

0

sα/2Ts(∆Tsf)(x)ds

and as a→∞,

(4.23) Sa,αf(x)→ cαIα(f)(x).

almost everywhere, where cα > 0 depends only on α.

Proof. We first observe that for f ∈ S(Rd) we have

E(f(Ba)) =

∫
Rd

Ex(f(Ba))dx =

∫
Rd

(∫
Rd
f(x̃)pa(x− x̃)dx̃

)
dx

=

∫
Rd
f(x̃)dx̃.(4.24)
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Let g ∈ S(Rd). Then, by the above calculations, integration by parts and self-adjointness
of the semigroup, we have∫
Rd
Sa,αf(x)g(x)dx =

∫
Rd

E
(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs | Ba = x

)
g(x)dx

= E
(
E
(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs | Ba
)
g(Ba)

)
= E

(
E
(
g(Ba)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)
|Ba

)
= E

(
g(Ba)

∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
)

= E
(∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · ∇(Ta−sg)(Bs)ds

)
=

∫ a

0

{
sα/2

∫
Rd
∇(Tsf)(x) · ∇(Tsg)(x)dx

}
ds

= −
∫ a

0

{
sα/2

∫
Rd

∆(Tsf)(x)(Tsg)(x)dx

}
ds

= −
∫ a

0

{
sα/2

∫
Rd
Ts (∆(Tsf))(x)g(x)dx

}
ds

= −
∫
Rd

{∫ a

0

sα/2 Ts (∆(Tsf))(x)ds

}
g(x)dx.

This completes the proof of (4.22).
Now recall that d

dtTtf = ∆Ttf . Write u(t, ·) = Ttf , then ∂
∂tu(t, ·) = ∆u(t, ·) and so

∂

∂t
u(2t, ·) = 2u′(2t, ·) = 2∆u(2t, ·).

This gives that

∆T2sf =
1

2

d

ds
T2sf

and hence

Sa,αf(x) = −
∫ a

0

sα/2 ∆(T2s)f(x)ds

= −1

2

∫ a

0

sα/2
dT2sf

ds
(x)ds

= −1

2
aα/2T2af(x) +

α

4

∫ a

0

sα/2−1T2sf(x)ds.

Since |T2af(x)| ≤ C
ad/2
‖f‖1 and 0 < α < d, a → ∞, the right hand side of the previous

equality goes to

α

4

∫ ∞
0

sα/2−1T2sf(x)ds = 2−
α+4
2 αΓ (α/2) Iαf(x)

and this proves (4.23). �

Remark 4.1. This derivation works in the setting of the manifolds studied in [5]; see the
proof of Lemma 3.2 in that paper. Hence it will also work on Lie groups as in [2]. These
directions will not be explored in this paper.
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Our goal is now to use the formula in (4.22) to give a proof of Hardy-Littlewood-
Sobolev inequality in Theorem 2.3 using martingale inequalities. We begin with the fol-
lowing simple proposition which follows just by differentiation of the Gaussian kernel.
We give its proof for completeness. We use the notation kt(x) := kt(x, 0) for each
x ∈ Rd, t > 0.

Proposition 4.1. For all x ∈ Rd, t > 0,

(4.25) |∇xkt(x)| ≤ 2
d+4
2

1√
t
k2t(x).

Proof. We start by observing that

∇xkt(x) = −
(x1
t
, · · · xd

t

)
kt(x)

so that

|∇xkt(x)| ≤ 1√
t

√
|x|2
t
kt(x)

=
1√
t

√
|x|2
t

1

(2πt)d/2
e−
|x|2
2t

We now claim that the right hand side is dominated by 2
d+4
2

1√
t
k2t(x). To see this,

observe that if
√
|x|2
t ≤ 1, then the right hand side is dominated by 1√

t
1

(2πt)d/2
e−
|x|2
2t . If

a =
√
|x|2
t > 1, then a < a2 = 4(a/2)2 ≤ 4e

a2

4 and the right hand side is dominated by

4
1√
t

1

(2πt)d/2
e(−

|x|2
2t +

|x|2
4t ) = 4

1√
t

1

(2πt)d/2
e−
|x|2
4t .

Since e−
|x|2
2t ≤ e−

|x|2
4t , we see that in either case, the right hand side of (4.25) is dominated

by

4
1√
t

1

(2πt)d/2
e−
|x|2
4t = 2

d+4
2

1√
t
k2t(x)

and this completes the proof. �

Remark 4.2. The estimate (4.25) which is the key to the calculations below holds more
widely on manifolds, see [19], [3] for much more on these type of bounds on heat kernels.

We now fix 0 < α < d and set 1
q = 1

p −
α
d , for 1 < p < ∞, and as always work with

functions in S(Rd). We assume that a is very large but fixed for now. By the classical
Burkholder-Gundy inequalities there is a constant Cq independent of a so that for all t ≥ a

||Ma,α
f (t)||q =

∥∥∥∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
∥∥∥
q

≤ Cq

∥∥∥(∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2 ds
)1/2 ∥∥∥

q
,(4.26)

where, as in (4.24), for all 1 < p <∞, h ∈ Lp(Rd), t ≥ 0,

||h(Bt)||p = (E(|h(Bt)|p)
1
p =

(∫
Rd
|h(x)|pdx

) 1
p

= ||h||p.
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Lemma 4.1. Let δ > 0 be arbitrary. Then there exists C1, C2 ≥ 0 so that
(4.27)∫ a

0

(a−s)α|∇(Ta−sf)(Bs)|2ds ≤ C1

(
sup

0<s<a
|(T2(a−s)|f |)(Bs)|

)2

δα+C2||f ||2pδα−d/p.

Proof. There are two cases to consider:
Case 1: δ > a. Using the estimate of Proposition 4.1 for the derivative of the heat

kernel, for some c1 > 0 depending only on d,∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2ds ≤ c1

∫ a

0

(a− s)α 1

a− s
|(T2(a−s)|f |)(Bs)|2ds

≤ c1 sup
0<s<a

|(T2(a−s)|f |)(Bs)|2
∫ a

0

(a− s)α−1ds

≤ c1 sup
0<s<a

|(T2(a−s)|f |)(Bs)|2
∫ δ

0

sα−1ds

≤ c1
α

sup
0<s<a

|(T2(a−s)|f |)(Bs)|2δα,

and the estimate (4.27) holds with C2 = 0.
Case 2: δ < a. Here, as before, write∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2 ds =

∫ a

0

sα|∇(Ts|f |)(Ba−s)|2 ds

=

∫ δ

0

sα|∇(Ts|f |)(Ba−s)|2 ds

+

∫ a

δ

sα|∇(Ts|f |)(Ba−s)|2 ds

= I + II.

Note that by Proposition 4.1 again for some c2 > 0 depending only on d,

I ≤ c2

∫ δ

0

sα−1|(T2s|f |)(Ba−s)|2ds

≤ c2 sup
0≤s≤δ

|(T2s|f |)(Ba−s)|2
∫ δ

0

sα−1ds(4.28)

≤ c2
α

sup
0≤s≤a

|T2(a−s)|f |)(Bs)|2δα

Next we use the estimate of Proposition 4.1 and the assumption (2.2) on the (d, p)-
ultracontractivity of the semigroup to conclude that

|∇(Tsf)(Ba−s)|2 ≤
c3
s
|(T2s|f |)(Ba−s)|2 ≤

c4
sd/p+1

||f ||2p

and therefore,

II ≤ c4||f ||2p
∫ a

δ

1

sd/p+1−α ds

≤ c5||f ||2p
∫ ∞
δ

1

sd/p+1−α ds(4.29)

≤ c6||f ||2pδα−d/p.
The result follows. �
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Using Lemma 4.1 we see that(∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2 ds
)1/2

≤ Cα,d sup
0<s<a

|T2(a−s)|f |(Bs)|δα/2

+ Cp,α,d‖f‖p δ
α
2−

d
2p .(4.30)

Minimizing this inequality in δ as before, we find that(∫ a

0

(a− s)α|∇(Ta−s|f |)(Bs)|2 ds
)1/2

(4.31)

≤ Cp,α,d

(
sup

0<s<a
|(T2(a−s)f)(Bs)|

)1−αp/d

||f ||αp/dp

= Cp,α,d

(
sup

0<s<a
|(T2(a−s)|f |)(Bs)|

)p/q
||f ||αp/dp ,

where the constant Cp,α,d depends only on the parameters indicated. In particular (and this
is important), this constant does not depend on a.

Remark 4.3. We remark that the value of δ that minimises (4.30) depends on ω ∈ Ω,
however the generality of Lemma 4.1 ensures the validity of this procedure.

Lemma 4.2. For 1 < p < ∞, f ∈ S(Rd), and all a > 0 there is a constant Cp indepen-
dent of a such that

(4.32)
∥∥∥( sup

0<s<a
|(T2(a−s)f)(Bs)|

)∥∥∥
p
≤ Cp ||f ||p

where the norm is taken with respect to the expectation E as above.

Proof. For all 0 ≤ t ≤ a, define Yt(f) := T2(a−t)f(Bt). We first show that (Yt(f), 0 ≤
t ≤ a) is a martingale. Define the process {Mt(f), 0 ≤ t ≤ a} by

Mt(f) :=

∫ t

0

∇T2(a−s)f(Bs) · dBs.

Then this process is a local martingale. To see that it is in fact a martingale, its enough
to show that it is square-integrable. Using Itô’s isometry, Proposition 4.1 and the (d, p)-
ultracontractivity assumption (2.2), we find that for all 0 ≤ t ≤ a,

E(Mt(f)2) =

∫ t

0

E(∇T2(a−s)f(Bs)
2)ds

≤ 1

2

∫ t

0

1

a− s
E(T4(a−s)f(Bs)

2)ds

≤ C1||f ||p
∫ t

0

(a− s)−
d
p−1ds

= C2||f ||p[(a− t)−
d
p − a−

d
p ] <∞.
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By Itô’s formula

Yt(f) = Y0(f) +Mt(f)− 1

2

∫ t

0

4T2(a−s)f(Bs)ds

= Y0(f) +Mt(f) +
1

4

∫ t

0

d

ds
T2(a−s)f(Bs)ds

= T2af(B0) +Mt(f) +
1

4
Yt(f)− 1

4
T2af(B0),

from which we deduce that

Yt(f) =
4

3
Mt(f) + T2af(B0).

Hence {Yt(f), 0 ≤ t ≤ a} is a martingale.
Note that by (4.24) E(|f(Ba)|p) = ‖f‖pp. Using this together with Doob’s maximal

inequality we find that

E
(

sup
0<s<a

|Ta−sf(Bs)|p
)

= E
(

sup
0<s<a

|Ys(f)|p
)

≤
(

p

p− 1

)p
E(|Ya(f)|p)

=

(
p

p− 1

)p
E|f(Ba)|p

=

(
p

p− 1

)p
||f ||pp

and this gives the desired inequality. �

Corollary 4.1. For 1 < p <∞,

(4.33)
∥∥∥( sup

0<s<a
|(T2(a−s)|f |)(Bs)|

)∥∥∥
p
≤ 2Cp||f ||p.

Proof. Let f+ = max{f, 0} and f− = max{−f, 0}. By the smoothing effect of the
semigroup we may apply (4.32) where f is replaced by f+ and f− (respectively) and then
we have ∥∥∥( sup

0<s<a
|(T2(a−s)|f |)(Bs)|

)∥∥∥
p

≤
∥∥∥( sup

0<s<a
|T2(a−s)f+)(Bs)

)∥∥∥
p

+
∥∥∥( sup

0<s<a
|(T2(a−s)f−)(Bs)|

)∥∥∥
p

≤ Cp(||f+||p + ||f−||p) ≤ 2Cp||f ||p,

which gives the result. �

We now proceed to show how a probabilistic proof of Theorem 2.3 for the heat semi-
group follows from our constructions. Recall that n = d in this case, fix 0 < α < d
and set 1

q = 1
p −

α
d , for 1 < p < ∞. By Theorem 4.1, the contraction of the Lq norm

by the conditional expectation and the classical Burkholder-Gundy inequalities, there is a
constant Cq independent of a so that for all f ∈ S(Rd),
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∥∥∥Sa,αf∥∥∥
q
≤

∥∥∥∫ a

0

(a− s)α/2∇(Ta−sf)(Bs) · dBs
∥∥∥
q

(4.34)

≤ Cq

∥∥∥(∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2 ds
)1/2 ∥∥∥

q
,

where the norm on the left hand side is on Rd with respect to the Lebesgue measure and
the right hand side is with respect to E.

By inequality (4.31) and Corollary 4.1,∥∥∥(∫ a

0

(a− s)α|∇(Ta−sf)(Bs)|2 ds
)1/2 ∥∥∥

q
≤ Cp,α,d‖f‖

p
q
p ‖f‖

αp
d
p .(4.35)

= Cp,α,d‖f‖p,

Since this bound does not depend on a, letting a → ∞ and applying Fatou’s lemma,
Theorem 4.1 and the density of S(Rd) in Lq(Rd) gives the result.

An alternative stochastic representation can be carried out using the Gundy-Varopoulos
[14] construction instead of the space-time Brownian process (Bt, a − t), 0 < t < a
from [6]. Such a construction will also work on a manifold. But even more, this con-
struction will work for any semigroup which, in addition to the ultracontractivity property
|Ttf(x)| ≤ C

tn/2
‖f‖1, satisfies the assumptions of Varopoulos [25]. We briefly explain the

construction on Rd. We let Tt be the heat semigroup and construct its Poisson semigroup
by subordination with β = 1/2 as in §3 above. We denote this semigroup by Pt and to
conform to more classical notation, we use y > 0 in place of t. Hence the semigroup is
denoted by Py . Given f ∈ S(Rd) we set uf (x, y) = Pyf(x), y ≥ 0, x ∈ Rd, again
to conform to the standard notation. We again fix a large a > 0 and let Zt = (Bt, Yt)

be Brownian motion in Rd+1
+ starting on the hyperplane (x, a) with initial distribution the

Lebesgue measure. That is, we start at each point (x, a) and integrate the initial distribution
with respect to x. This gives expectation which we denote by Ea. If we let

τa = inf{t > 0 : Yt = 0},

then we see that for any f ∈ S(Rd),

Eaf(Bτa) =

∫
Rd
f(x)dx,

just as before.
For f , a and α as above, we define

(4.36) T a,αf(x) = Ea
(∫ τa

0

Y αt
∂uf
∂y

(Bt, Yt)dYt | Bτa = x

)
.

Theorem 4.2. For all f ∈ S(Rd), as a→∞

(4.37) T a,αf → CαIαf,

for some constant Cα, in the sense that

(4.38)
∫
Rd
T a,αf(x)g(x)dx→ Cα

∫
Rd
Iαf(x)g(x)dx,

fo all f, g ∈ S(Rd).
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The proof of this Theorem is exactly the same as the proof given in [4, §3.4] for the
representation of the Riesz transforms and we leave it to the reader. We also refer the reader
to [25] where these type of arguments are presented for general semigroups. In particular,
the same argument will work if instead of Rd we take a manifold M with a Brownian
motion Xt and consider the space M × (0,∞) with the Brownian motion (Xt, Yt) where
Yt is a one dimensional Brownian motion killed the first time it hits 0.
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Paris Sér. I. Math. 289, A13-A16 (1979)
[15] S. Geiss, S. Mongomery-Smith and E. Saksman, On singular integral and martingale transforms, Trans.

Amer. Math. Soc., 362, 555-575 (2010)
[16] A.Grigor’yan, J.Hu, K-S Lau, Estimates of heat kernels for non-local regular Dirichlet forms, to appear in

Trans. Amer. Math. Soc.
[17] A.Grigor’yan, A.Telcs, Two-sided estimates of heat kernels on metric measure spaces, Annals of Probability

40, 1212-1284 (2012)
[18] L.I.Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36, 505-10 (1972).
[19] P.Li, S-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 153-201 (1986).
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